Skip to main content
Log in

Hamiltonian Systems Admitting a Runge–Lenz Vector and an Optimal Extension of Bertrand’s Theorem to Curved Manifolds

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Bertrand’s theorem asserts that any spherically symmetric natural Hamiltonian system in Euclidean 3-space which possesses stable circular orbits and whose bounded trajectories are all periodic is either a harmonic oscillator or a Kepler system. In this paper we extend this classical result to curved spaces by proving that any Hamiltonian on a spherically symmetric Riemannian 3-manifold which satisfies the same conditions as in Bertrand’s theorem is superintegrable and given by an intrinsic oscillator or Kepler system. As a byproduct we obtain a wide panoply of new superintegrable Hamiltonian systems. The demonstration relies on Perlick’s classification of Bertrand spacetimes and on the construction of a suitable, globally defined generalization of the Runge–Lenz vector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah M.F., Hitchin N.J.: Low-energy scattering of non-Abelian magnetic monopoles. Phys. Lett. A 107, 21–25 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  2. Ballesteros A., Enciso A., Herranz F.J., Ragnisco O.: A maximally superintegrable system on an n-dimensional space of nonconstant curvature. Physica D 237, 505–509 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Ballesteros A., Enciso A., Herranz F.J., Ragnisco O.: Bertrand spacetimes as Kepler/oscillator potentials. Class. Quant. Grav. 25, 165005 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  4. Ballesteros A., Herranz F.J., Santander M., Sanz-Gil T.: Maximal superintegrability on N-dimensional curved spaces. J. Phys. A: Math. Gen. 36, L93–L99 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Ballesteros A., Herranz F.J.: Universal integrals for superintegrable systems on N-dimensional spaces of constant curvature. J. Phys. A: Math. Theor. 40, F51–F59 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bertrand J.: Théorème relatif au mouvement d’un point attiré vers un centre fixe. C. R. Math. Acad. Sci. Paris 77, 849–853 (1873)

    Google Scholar 

  7. Bini D., Cherubini C., Jantzen R.T., Mashhoon B.: Gravitomagnetism in the Kerr–Newman–Taub–NUT spacetime. Class. Quant. Grav. 20, 457–468 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Bogoyavlenskij, O.I.: Theory of tensor invariants of integrable Hamiltonian systems I. Commun. Math. Phys. 180, 529–586 (1996); II. Ibid. 184, 301–365 (1997)

    Google Scholar 

  9. Braam P.J.: Magnetic monopoles on three-manifolds. J. Diff. Geom. 30, 425–464 (1989)

    MATH  MathSciNet  Google Scholar 

  10. Cherkis S.A., Kapustin A.: Nahm transform for periodic monopoles and \({\mathcal N=2}\) Super Yang-Mills theory. Commun. Math. Phys. 218, 333–371 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Cordani B., Fehér L.G., Horváthy P.A.: Kepler-type dynamical symmetries of long-range monopole interactions. J. Math. Phys. 31, 202–211 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Dazord P., Delzant T.: Le problème général des variables actions-angles. J. Diff. Geom. 26, 223–251 (1987)

    MATH  MathSciNet  Google Scholar 

  13. Enciso, A., Peralta-Salas, D.: Geometrical and topological aspects of Electrostatics on Riemannian manifolds. J. Geom. Phys. 57, 1679–1696 (2007); Addendum, ibid. 58, 1267–1269 (2008)

    Google Scholar 

  14. Enciso, A., Peralta-Salas, D.: Critical points and level sets in exterior boundary problems. Indiana Univ. Math. J., in press, 2009

  15. Enciso, A., Peralta-Salas, D.: Critical points and generic properties of Green functions on complete manifolds. Preprint, 2009

  16. Fassò F.: Quasi-periodicity of motions and complete integrability of Hamiltonian systems. Ergod. Th. & Dynam. Syst. 18, 1349–1362 (1998)

    Article  MATH  Google Scholar 

  17. Fassò F.: Superintegrable Hamiltonian systems: Geometry and perturbations. Acta Appl. Math. 87, 93–121 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Féjoz J., Kaczmarek L.: Sur le théorème de Bertrand. Ergod. Th. & Dynam. Sys. 24, 1583–1589 (2004)

    Article  MATH  Google Scholar 

  19. Fradkin D.M.: Three-dimensional isotropic harmonic oscillator and SU3. Amer. J. Phys. 33, 207–211 (1965)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Fradkin D.M.: Existence of the dynamic symmetries O4 and SU3 for all classical central potential problems. Prog. Theor. Phys. 37, 798–812 (1967)

    Article  ADS  Google Scholar 

  21. Gibbons G.W., Warnick C.M.: Hidden symmetry of hyperbolic monopole motion. J. Geom. Phys. 57, 2286–2315 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Gibbons G.W., Ruback P.J.: The hidden symmetries of multi-centre metrics. Commun. Math. Phys. 115, 267–300 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Guillemin, V., Sternberg, S.: Variations on a theme by Kepler. Providence, RI: Amer. Math. Soc., 1990

  24. Hauser I., Malhiot R.: Spherically symmetric static space-times which admit stationary Killing tensors of rank two. J. Math. Phys 15, 816–823 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  25. Higgs P.W.: Dynamical symmetries in a spherical geometry. J. Phys. A: Math. Gen. 12, 309–323 (1979)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Holas A., March N.H.: A generalization of the Runge–Lenz constant of classical motion in a central potential. J. Phys. A: Math. Gen. 23, 735–749 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Iwai T., Katayama N.: Two classes of dynamical systems all of whose bounded trajectories are closed. J. Math. Phys. 35, 2914–2933 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Iwai T., Katayama N.: Multifold Kepler systems—Dynamical systems all of whose bounded trajectories are closed. J. Math. Phys. 36, 1790–1811 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Jezierski J., Lukasik M.: Conformal Yano–Killing tensors for the Taub–NUT metric. Class. Quant. Grav. 24, 1331–1340 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Kalnins E.G., Kress J.M., Miller W.: Second-order superintegrable systems in conformally flat spaces. IV. The classical 3D Stäckel transform and 3D classification theory. J. Math. Phys. 47, 043514 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  31. Kalnins E.G., Kress J.M., Winternitz P.: Superintegrability in a two-dimensional space of nonconstant curvature. J. Math. Phys. 43, 970–983 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. Kalnins E.G., Kress J.M., Miller W., Winternitz P.: Superintegrable systems in Darboux spaces. J. Math. Phys. 44, 5811–5848 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Krivonos S., Nersessian A., Ohanyan V.: Multicenter McIntosh-Cisneros-Zwanziger-Kepler system, supersymmetry and integrability. Phys. Rev. D 75, 085002 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  34. Kronheimer P.B., Mrowka T.S.: Monopoles and contact structures. Invent. Math. 130, 209–255 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Kronheimer P.B., Mrowka T.S., Ozsvàth P., Szabó Z.: Monopoles and lens space surgeries. Ann. Math. 165, 457–546 (2007)

    Article  MATH  Google Scholar 

  36. Leach P.G.L., Flessas G.P.: Generalisations of the Laplace–Runge–Lenz vector. J. Nonlin. Math. Phys. 10, 340–423 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  37. Li P., Tam L.F.: Symmetric Green’s functions on complete manifolds. Amer. J. Math. 109, 1129–1154 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  38. Li P., Tam L.F.: Green’s functions, harmonic functions, and volume comparison. J. Diff. Geom. 41, 277–318 (1995)

    MATH  MathSciNet  Google Scholar 

  39. Manton N.S.: A remark on the scattering of BPS monopoles. Phys. Lett. B 110, 54–56 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  40. McIntosh H.V., Cisneros A.: Degeneracy in the presence of a magnetic monopole. J. Math. Phys. 11, 896–916 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  41. Meigniez G.: Submersions, fibrations and bundles. Trans. Amer. Math. Soc. 354, 3771–3787 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  42. Mischenko A.S., Fomenko A.T.: Generalized Liouville method of integration of Hamiltonian systems. Funct. Anal. Appl. 12, 113–121 (1978)

    Article  Google Scholar 

  43. Nash O.: Singular hyperbolic monopoles. Commun. Math. Phys. 277, 161–187 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. Nekhoroshev N.N.: Action-angle variables and their generalizations. Trans. Moskow Math. Soc. 26, 180–198 (1972)

    Google Scholar 

  45. Nersessian A., Yeghikyan V.: Anisotropic inharmonic Higgs oscillator and related (MICZ-) Kepler-like systems. J. Phys. A: Math. Theor. 41, 155203 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  46. Norbury P., Romão N.M.: Spectral curves and the mass of hyperbolic monopoles. Commun. Math. Phys. 270, 295–333 (2007)

    Article  MATH  ADS  Google Scholar 

  47. Perlick V.: Bertrand spacetimes. Class. Quant. Grav. 9, 1009–1021 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  48. Schrödinger E.: Eigenvalues and eigenfunctions. Proc. Roy. Irish Acad. Sect. A 46, 9–16 (1940)

    MATH  MathSciNet  Google Scholar 

  49. Shchepetilov, A.V.: Comment on “Central potentials on spaces of constant curvature: The Kepler problem on the two-dimensional sphere \({\mathbb S^2}\) and the hyperbolic plane \({\mathbb H^2}\)” [J. Math. Phys. 46, 052702 (2005)]. J. Math. Phys. 46, 114101 (2005)

    Google Scholar 

  50. Seiberg, N., Witten, E.: Electric-magnetic duality, monopole condensation, and confinement in N =  2 supersymmetric Yang-Mills theory. Nucl. Phys. B 426, 19–53 (1994); Monopoles, duality and chiral symmetry breaking in N =  2 supersymmetric QCD. Nucl. Phys. B 431, 484–550 (1994)

    Google Scholar 

  51. Weinstein A.: The local structure of Poisson manifolds. J. Diff. Geom. 18, 525–557 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Enciso.

Additional information

Communicated by G.W. Gibbons

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballesteros, Á., Enciso, A., Herranz, F.J. et al. Hamiltonian Systems Admitting a Runge–Lenz Vector and an Optimal Extension of Bertrand’s Theorem to Curved Manifolds. Commun. Math. Phys. 290, 1033–1049 (2009). https://doi.org/10.1007/s00220-009-0793-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0793-5

Keywords

Navigation