Skip to main content

Advertisement

Log in

Critical Measures, Quadratic Differentials, and Weak Limits of Zeros of Stieltjes Polynomials

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate the asymptotic zero distribution of Heine-Stieltjes polynomials – polynomial solutions of second order differential equations with complex polynomial coefficients. In the case when all zeros of the leading coefficients are all real, zeros of the Heine-Stieltjes polynomials were interpreted by Stieltjes as discrete distributions minimizing an energy functional. In a general complex situation one deals instead with a critical point of the energy. We introduce the notion of discrete and continuous critical measures (saddle points of the weighted logarithmic energy on the plane), and prove that a weak-* limit of a sequence of discrete critical measures is a continuous critical measure. Thus, the limit zero distributions of the Heine-Stieltjes polynomials are given by continuous critical measures. We give a detailed description of such measures, showing their connections with quadratic differentials. In doing that, we obtain some results on the global structure of rational quadratic differentials on the Riemann sphere that have an independent interest.

The problem has a rich variety of connections with other fields of analysis; some of them are briefly mentioned in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agnew A., Bourget A.: The semiclassical density of states for the quantum asymmetric top. J. Phys. A. Math. and Theor. 41(18), 185205 (2008)

    Article  MathSciNet  Google Scholar 

  2. Al-Rashed A.M., Zaheer N.: Zeros of Stieltjes and Van Vleck polynomials and applications. J. Math. Anal. Appl. 110(2), 327–339 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alam M.: Zeros of Stieltjes and Van Vleck polynomials. Trans. Amer. Math. Soc. 252, 197–204 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aptekarev, A.I.: Sharp constants for rational approximations of analytic functions. Mat. Sb. 193, 3–72 (2003); Engl. Trans. Sb. Math. 193(3), 1–72 (2003)

  5. Aptekarev A.I., Bleher P.M., Kuijlaars A.B.J.: Large n limit of Gaussian random matrices with external source. II. Commun. Math. Phys. 259(2), 367–389 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Bergkvist T., Rullgård H.: On polynomial eigenfunctions for a class of differential operators. Math. Res. Lett. 9(2–3), 153–171 (2002)

    MATH  Google Scholar 

  7. Bertola, M.: Boutroux curves with external field: equilibrium measures without a minimization problem. http://arxiv.org/abs/0705.3062v3 [nlin.SI], 2007

  8. Bertola M., Eynard B., Harnad J.: Duality: biorthogonal polynomials and multi-matrix models. Commun. Math. Phys. 229, 73–120 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Bertola M., Gekhtman M., Szmigielski J.: The Cauchy two-matrix model. Commun. Math. Phys. 287(3), 983–1014 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Bleher P.M., Its A.: Semiclassical asymptotics of orthogonal polynomials, Riemann–Hilbert problem, and universality in the matrix model. Ann. Math. 150, 185–266 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bleher, P.M., Delvaux, S., Kuijlaars, A.B.J.: Random matrix model with external source and a constrained vector equilibrium problem. http://arxiv.org/abs/1001.1238v1 [math.ph], 2010

  12. Bleher, P.M., Kuijlaars, A.B.J.: Random matrices with external source and multiple orthogonal polynomials. Int. Math. Res. Not. (3), 109–129 (2004)

  13. Bleher P.M., Kuijlaars A.B.J.: Large n limit of Gaussian random matrices with external source. I. Commun. Math. Phys. 252(1–3), 43–76 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Bleher P.M., Kuijlaars A.B.J.: Large n limit of Gaussian random matrices with external source. III. Double scaling limit. Commun. Math. Phys. 270(2), 481–517 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Bôcher M.: The roots of polynomials that satisfy certain differential equations of the second order. Bull. Amer. Math. Soc. 4, 256–258 (1987)

    Article  Google Scholar 

  16. Borodin A.: Biorthogonal ensembles. Nucl. Phys. B 536, 704–732 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  17. Bourget A., McMillen T.: Spectral inequalities for the quantum assymetrical top. J. Phys. A: Math. Theor. 42(9), 095209 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  18. Bourget A., McMillen T., Vargas A.: Interlacing and non-orthogonality of spectral polynomials for the lamé operator. Proc. Amer. Math. Soc. 137(5), 1699–1710 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Courant, R.: Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces. New York: Interscience Publishers, Inc., 1950, including an, Appendix “Some recent developments in the theory of conformal mapping” by M. Schiffer

  20. Craig W.: The trace formula for Schrödinger operators on the line. Commun. Math. Phys. 126, 379–407 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Deift P., Kriecherbauer T., McLaughlin K.T.-R.: New results on the equilibrium measure for logarithmic potentials in the presence of an external field. J. Approx. Theory 95(3), 388–475 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Deift P., Kriecherbauer T., McLaughlin K.T.-R., Venakides S., Zhou X.: Strong asymptotics of orthogonal polynomials with respect to exponential weights. Comm. Pure Appl. Math. 52(12), 1491–1552 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Deift P., Kriecherbauer T., McLaughlin K.T.-R., Venakides S., Zhou X.: Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Comm. Pure Appl. Math. 52(11), 1335–1425 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Deift, P.A.: Orthogonal polynomials and random matrices: a Riemann-Hilbert approach. New York: New York University Courant Institute of Mathematical Sciences, 1999

  25. Dimitrov, D.K., Van Assche, W.: Lamé differential equations and electrostatics. Proc. Amer. Math. Soc. 128(12), 3621–3628, (2000), Erratum: Proc. Amer. Math. Soc. 131(7), 2303 (2003)

    Google Scholar 

  26. Dragnev P., Saff E.B.: Constrained energy problems with applications to orthogonal polynomials of a discrete variable. J. d’Anal. Math. 72, 229–265 (1997)

    MathSciNet  Google Scholar 

  27. Duits, M., Geudens, D., Kuijlaars, A.B.J.: A vector equilibrium problem for the two-matrix model in the quartic/quadratic case. http://arxiv.org/abs/1007.3137v1 [math,CA], 2010

  28. Duits M., Kuijlaars A.B.J.: Universality in the two matrix model: a Riemann-Hilbert steepest descent analysis. Comm. Pure Appl. Math. 62, 1076–1153 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Ercolani N., McLaughlin K.D.T.-R.: Asymptotics and integrable structures for biorthogonal polynomials associated to a random two-matrix model. Physica D 152/153, 232–268 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  30. Fokas A.S., Its A.R, Kitaev A.V.: The isomonodromy approach to matrix models in 2D quantum gravity. Comm. Math. Phys. 147, 395–430 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Gesztesy F., Zinchenko M.: Local spectral properties of reflectionless Jacobi, CMV, and Schrödinger operators. J. Diff. Eq. 246, 78–107 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Gesztesy F., Zinchenko M.: A Borg-type theorem associated with orthogonal polynomials on the unit circle. J. London Math. Soc. 74(2), 757–777 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Gesztesy F., Zinchenko M.: Weyl–Titchmarsh theory for CMV operators associated with orthogonal polynomials on the unit circle. J. Approx. Th. 139, 172–213 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Gonchar, A.A., Rakhmanov, E.A.: Equilibrium measure and the distribution of zeros of extremal polynomials. Mat. Sbornik 125(2), 117–127, (1984), translation from Mat. Sb., Nov. Ser. 134(176), No. 3(11), 306–352 (1987)

  35. Gonchar, A.A., Rakhmanov, E.A.: The equilibrium problem for vector potentials. Usp. Mat. Nauk, 40(4(244)), 155–156 (1985)

    Google Scholar 

  36. Gonchar, A.A., Rakhmanov, E.A.: Equilibrium distributions and degree of rational approximation of analytic functions. Math. USSR Sbornik, 62(2), 305–348, (1987), translation from Mat. Sb., Nov. Ser. 134(176), No. 3(11), 306–352 (1987)

  37. Grosset M.P., Veselov A.P.: Lamé equation, quantum top and elliptic Bernoulli polynomials. Proc. Edinb. Math. Soc. (2) 51(3), 635–650 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  38. Grötzsch H.: Über ein Variationsproblem der konformen Abbildungen. Ber. Verh.- Sächs. Akad. Wiss. Leipzig 82, 251–263 (1930)

    Google Scholar 

  39. Grünbaum F.A.: Variations on a theme of Heine and Stieltjes: An electrostatic interpretation of the zeros of certain polynomials. J. Comput. Appl. Math. 99, 189–194 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  40. Harnad J., Winternitz P.: Harmonics on hyperspheres, separation of variables and the Bethe ansatz. Lett. Math. Phys. 33(1), 61–74 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. Heine, E.: Handbuch der Kugelfunctionen. Volume II. 2nd. edition. Berlin: G. Reimer (1878)

  42. Ismail M.E.H.: An electrostatic model for zeros of general orthogonal polynomials. Pacific J. Math. 193, 355–369 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  43. Jenkins, J.A.: Univalent functions and conformal mapping. Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge, Heft 18. Reihe: Moderne Funktionentheorie. Berlin: Springer-Verlag, 1958

  44. Jost, J.: Compact Riemann Surfaces. Springer Universitext. 3rd. edition. Berlin-Heidelberg, New York: Springer, 2006

  45. Kamvissis S., Rakhmanov E.A.: Existence and regularity for an energy maximization problem in two dimensions. J. Math. Phys. 46(8), 083505 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  46. Kamvissis, S., McLaughlin, K.D.T.-R., Miller, P.D.: Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation, Volume 154 of Annals of Mathematics Studies. Princeton, NJ: Princeton University Press, 2003

  47. Kuijlaars A.B.J., Martínez-Finkelshtein A.: Strong asymptotics for Jacobi polynomials with varying nonstandard parameters. J. Anal. Math. 94, 195– (2004)

    Article  MATH  MathSciNet  Google Scholar 

  48. Kuijlaars A.B.J., Martínez-Finkelshtein A., Wielonsky F.: Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights. Commun. Math. Phys. 286(1), 217– (2009)

    Article  MATH  ADS  Google Scholar 

  49. Kuijlaars A.B.J., McLaughlin K.T.-R.: Asymptotic zero behavior of Laguerre polynomials with negative parameter. Constructive Approximation 20(4), 497–523 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  50. Kuijlaars A.B.J., McLaughlin K.T.-R., Van Assche W., Vanlessen M.: The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on [−1,1]. Adv. Math. 188(2), 337–398 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  51. Kuz’mina G.V.: Moduli of families of curves and quadratic differentials. Proc. Steklov Inst. Math. 139, 1–231 (1982)

    MATH  MathSciNet  Google Scholar 

  52. Lavrentieff M.: Sur un problème de maximum dans la représentation conforme. C. R. 191, 827–829 (1930)

    MATH  Google Scholar 

  53. Lavrentieff, M.: On the theory of conformal mappings. Trudy Fiz.-Mat. Inst. Steklov. Otdel. Mat. 5, 159–245 (1934) (Russian)

  54. Lax P.D., Levermore C.D.: The small dispersion limit of the Korteweg-de Vries equation. I. Comm. Pure Appl. Math. 36(3), 253–290 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  55. Lax P.D., Levermore C.D.: The small dispersion limit of the Korteweg-de Vries equation. II. Comm. Pure Appl. Math. 36(5), 571–593 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  56. Lax P.D., Levermore C.D.: The small dispersion limit of the Korteweg-de Vries equation. III. Comm. Pure Appl. Math. 36(6), 809–829 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  57. Marcellán, F., Martínez-Finkelshtein, A., Martínez-González, P.: Electrostatic models for zeros of polynomials: Old, new, and some open problems. J. Comput. Appl. Math. 207(2), 258–272 (2007)

    Google Scholar 

  58. Marden, M.: Geometry of Polynomials, Volume 3 of Math. Surveys. 2nd. edition, Amer. Math. Soc., Providence, R. I., 1966

  59. Martines Finkel′shteĭn, A.: On the rate of rational approximation of the function exp(−x) on the positive semi-axis. Vestnik Moskov. Univ. Ser. I Mat. Mekh., (6), 94–96 (1991), Engl. transl. in Moscow Univ. Math. Bull. 6, 65–67 (1991)

  60. Martínez-Finkelshtein A., Orive R.: Riemann-Hilbert analysis of Jacobi polynomials orthogonal on a single contour. J. Approx. Theory 134(2), 137– (2005)

    Article  MATH  MathSciNet  Google Scholar 

  61. Martínez-Finkelshtein A., Saff E.B.: Asymptotic properties of Heine-Stieltjes and Van Vleck polynomials. J. Approx. Theory 118(1), 131– (2002)

    Article  MATH  MathSciNet  Google Scholar 

  62. McLaughlin, K. T.-R., Miller, P.D.: The \({\overline{\partial}}\) steepest descent method and the asymptotic behavior of polynomials orthogonal on the unit circle with fixed and exponentially varying nonanalytic weights. IMRP Int. Math. Res. Pap., pages Art. ID 48673, 1–77 (2006)

  63. McLaughlin, K.T.-R., Miller, P.D.: The \({\overline{\partial}}\) steepest descent method for orthogonal polynomials on the real line with varying weights. Int. Math. Res. Not. IMRN, pages Art. ID rnn 075, 66, (2008)

  64. McLaughlin K.T.-R., Vartanian A.H., Zhou X.: Asymptotics of recurrence relation coefficients, Hankel determinant ratios, and root products associated with Laurent polynomials orthogonal with respect to varying exponential weights. Acta Appl. Math. 100(1), 39–104 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  65. Melnikov M., Poltoratski A., Volberg A.: Uniqueness theorems for Cauchy integrals. Publ. Mat. 52(2), 289–314 (2008)

    MATH  MathSciNet  Google Scholar 

  66. Mhaskar H.N., Saff E.B.: Extremal problems for polynomials with exponential weights. Trans. Amer. Math. Soc. 285, 204–234 (1984)

    Article  MathSciNet  Google Scholar 

  67. Nuttall J.: Asymptotics of diagonal Hermite-Padé polynomials. J. Approx. Theory 42(4), 299–386 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  68. Nuttall J.: Asymptotics of generalized Jacobi polynomials. Constr. Approx. 2(1), 59–77 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  69. Ortega-Cerdà, J., Pridhnani, B.: The Pólya-Tchebotaröv problem. In Harmonic Analysis and Partial Differential Equations, pp. 153–170. Contemp. Math., 505, Amer. Math. Soc., Providence, R.I., 2010

  70. Pólya G.: Sur un théoreme de Stieltjes. C. R. Acad. Sci. Paris 155, 767–769 (1912)

    MATH  Google Scholar 

  71. Pólya G.: Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete. III. Sitzungsberichte Akad. Berlin 1929, 55–62 (1929)

    Google Scholar 

  72. Pommerenke, Ch.: Univalent Functions. Göttingen: Vandenhoeck & Ruprecht, 1975

  73. Rakhmanov E.A.: On asymptotic properties of polynomials orthogonal on the real axis. Math. USSR Sb. 47, 155–193 (1984)

    Article  MATH  Google Scholar 

  74. Rakhmanov E.A.: Equilibrium measure and the distribution of zeros of the extremal polynomials of a discrete variable. Sb. Math. 187, 1213–1228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  75. Rakhmanov, E.A., Perevozhnikova, E.A.: Variations of the equilibrium energy and S-property of compacta of minimal capacity. Preprint, 1994

  76. Ronveaux, A. (ed.): Heun’s differential equations. New York: The Clarendon Press Oxford University Press, (1995), With contributions by F. M. Arscott, S. Yu. Slavyanov, D. Schmidt, G. Wolf, P. Maroni and A. Duval

  77. Saff, E.B., Totik, V.: Logarithmic Potentials with External Fields. Volume 316 of Grundlehren der Mathematischen Wissenschaften. Berlin: Springer-Verlag, 1997

  78. Shah G.M.: On the zeros of Van Vleck polynomials. Proc. of the Amer. Math. Soc. 19(6), 1421–1426 (1968)

    Article  MATH  Google Scholar 

  79. Shah G.M.: Confluence of the singularities of the generalized Lame’s differential equation. J. Natur. Sci. and Math. 91, 33–147 (1969)

    Google Scholar 

  80. Shah G.M.: Monotonic variation of the zeros of Stieltjes and Van Vleck polynomials. J. Indian Math. Soc. (N.S.) 33, 85–92 (1969)

    MATH  MathSciNet  Google Scholar 

  81. Shah G.M.: On the zeros of Stieltjes and Van Vleck polynomials. Illinois J. Math. 14, 522–528 (1970)

    MATH  MathSciNet  Google Scholar 

  82. Shapiro, B.: Algebro-geometric aspects of Heine–Stieltjes polynomials. http://arxiv.org/abs/0812.4193v2 [math.ph], 2008

  83. Shapiro B., Tater M.: On spectral polynomials of the Heun equation. I. J. Approx. Theory 1162(4), 766–781 (2010)

    Article  MathSciNet  Google Scholar 

  84. Soshnikov A.: Determinantal random point fields. Russ. Math. Surv. 55, 923–975 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  85. Springer, G.: Introduction to Riemann surfaces. Reading, Mass: Addison-Wesley Publishing Company, 1957

  86. Stahl, H.: Sets of minimal capacity and extremal domains. Preprint, 2008

  87. Stahl, H.: Extremal domains associated with an analytic function. I, II. Complex Variables Theory Appl. 4(4), 311–324, 325–338 (1985)

  88. Stahl, H.: Orthogonal polynomials with complex-valued weight function. I, II. Constr. Approx. 2(3), 225–240, 241–251 (1986)

  89. Stahl H.: On the convergence of generalized Padé approximants. Constr. Approx. 5(2), 221–240 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  90. Stieltjes T.J.: Sur certains polynômes que vérifient une équation différentielle linéaire du second ordre et sur la teorie des fonctions de Lamé. Acta Math. 6, 321–326 (1885)

    Article  MathSciNet  MATH  Google Scholar 

  91. Strebel, K.: Quadratic differentials. Volume 5 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Berlin: Springer-Verlag, 1984

  92. Szegő, G.: Orthogonal Polynomials. Volume 23 of Amer. Math. Soc. Colloq. Publ. fourth edition, Providence, RI: Amer. Math. Soc., 1975

  93. Teichmüller O.: Unlersuchungen über konforme unu quasikonforme Abbildungen. Deutsche Math. 3, 621–678 (1938)

    MATH  Google Scholar 

  94. Teschl, G.: Jacobi Operators and Completely Integrable Nonlinear Lattices. Providence, RF: Amer. Math. Soc., 1999

  95. Van Vleck E.B.: On the polynomials of Stieltjes. Bull. Amer. Math. Soc. 4, 426–438 (1898)

    Article  MathSciNet  MATH  Google Scholar 

  96. Vasil′ev, A.: Moduli of families of curves for conformal and quasiconformal mappings. Volume 1788 of Lecture Notes in Mathematics. Berlin: Springer-Verlag, 2002

  97. Volkmer, H.: Multiparameter eigenvalue problems and expansion theorems. Lecture Notes Math., 1356, Berlin- Hedelberg- New York: Springer, 1988

  98. Volkmer, H.: Generalized ellipsoidal and spheroconal harmonics. SIGMA Symmetry Integrability Geom. Methods Appl. 2, paper 071, pp. 16 (2006)

  99. Volkmer, H.: External ellipsoidal harmonics for the Dunkl–Laplacian. SIGMA 4, paper 091, pp. 13 (2008)

  100. Whittaker E.T., Watson G.N.: A Course of Modern Analysis. Cambridge Univ. Press, Cambridge (1996)

    MATH  Google Scholar 

  101. Zaheer N.: On Stieltjes and Van Vleck polynomials. Proc. Amer. Math. Soc. 60, 169–174 (1976)

    Article  MathSciNet  Google Scholar 

  102. Zaheer N., Alam M.: On the zeros of Stieltjes and Van Vleck polynomials. Trans. Amer. Math. Soc. 229, 279–288 (1977)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Martínez-Finkelshtein.

Additional information

Communicated by S. Zelditch

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Finkelshtein, A., Rakhmanov, E.A. Critical Measures, Quadratic Differentials, and Weak Limits of Zeros of Stieltjes Polynomials. Commun. Math. Phys. 302, 53–111 (2011). https://doi.org/10.1007/s00220-010-1177-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1177-6

Keywords

Navigation