Skip to main content
Log in

Hilbert Expansion from the Boltzmann Equation to Relativistic Fluids

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the local-in-time hydrodynamic limit of the relativistic Boltzmann equation using a Hilbert expansion. More specifically, we prove the existence of local solutions to the relativistic Boltzmann equation that are nearby the local relativistic Maxwellians. The Maxwellians are constructed from a class of solutions to the relativistic Euler equations that includes a large subclass of near-constant, non-vacuum fluid states. In particular, for small Knudsen number, these solutions to the relativistic Boltzmann equation have dynamics that are effectively captured by corresponding solutions to the relativistic Euler equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arsénio, D.: On the Boltzmann equation: Hydrodynamic limit with long-range interactions and mild solutions. Ph.D. dissertation, Department of Mathematics, New York University, September 2009

  2. Bardos C., Golse F., Levermore C.D.: Fluid dynamic limits of kinetic equations. II. Convergence proofs for the Boltzmann equation. Comm. Pure Appl. Math. 46(5), 667–753 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bardos C., Golse F., Levermore C.D.: Acoustic and Stokes limits for the Boltzmann equation. C. R. Acad. Sci. Paris Sér. I Math. 327(3), 323–328 (1998)

    MATH  ADS  MathSciNet  Google Scholar 

  4. Bardos C., Golse F., Levermore D.: Sur les limites asymptotiques de la théorie cinétique conduisant à la dynamique des fluides incompressibles. C. R. Acad. Sci. Paris Sér. I Math. 309(11), 727–732 (1989)

    MATH  MathSciNet  Google Scholar 

  5. Bardos C., Golse F., Levermore D.: Fluid dynamic limits of kinetic equations. I. Formal derivations. J. Statist. Phys. 63(1-2), 323–344 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bardos C., Ukai S.: The classical incompressible Navier-Stokes limit of the Boltzmann equation. Math. Models Methods Appl. Sci. 1(2), 235–257 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. Boisseau B., van Leeuwen W.A.: Relativistic Boltzmann theory in D + 1 spacetime dimensions. Ann. Physics 195(2), 376–419 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Caflisch R.E.: The fluid dynamic limit of the nonlinear Boltzmann equation. Comm. Pure Appl. Math. 33(5), 651–666 (1980)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Cercignani, C., Medeiros Kremer, G.: The relativistic Boltzmann equation: theory and applications. Progress in Mathematical Physics, Vol. 22. Basel: Birkhäuser Verlag, 2002

  10. Christodoulou D.: The Euler equations of compressible fluid flow. Bull. Amer. Math. Soc. (N.S.) 44(4), 581–602 (2007) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  11. Christodoulou, D.: The formation of shocks in 3-dimensional fluids. Zürich: European Mathematical Society, 2007

  12. de Groot, S.R., van Leeuwen, W.A., van Weert, Ch.G.: Relativistic kinetic theory. Amsterdam, North-Holland Publishing Co., 1980

  13. De Masi A., Esposito R., Lebowitz J.L.: Incompressible Navier-Stokes and Euler limits of the Boltzmann equation. Comm. Pure Appl. Math. 42(8), 1189–1214 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. DiPerna R.J., Lions P.-L.: On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. of Math. (2) 130(2), 321–366 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dudyński M.: On the linearized relativistic Boltzmann equation. II. Existence of hydrodynamics. J. Stat. Phys. 57(1-2), 199–245 (1989)

    Article  MATH  ADS  Google Scholar 

  16. Dudyński M., Ekiel-Jeżewska M.L.: On the linearized relativistic Boltzmann equation. I. Existence of solutions. Commun. Math. Phys. 115(4), 607–629 (1988)

    Article  MATH  ADS  Google Scholar 

  17. Dudyński M., Ekiel-Jeżewska M.L.: The relativistic Boltzmann equation - mathematical and physical aspects. J. Tech. Phys. 48, 39–47 (2007)

    MATH  Google Scholar 

  18. Glassey, R.T.: The Cauchy problem in kinetic theory. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 1996

  19. Glassey R.T., Strauss W.A.: On the derivatives of the collision map of relativistic particles. Transport Theory Statist. Phys. 20(1), 55–68 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Glassey R.T., Strauss W.A.: Asymptotic stability of the relativistic Maxwellian. Publ. Res. Inst. Math. Sci. 29(2), 301–347 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Golse, F.: The Boltzmann equation and its hydrodynamic limits. In: Evolutionary equations. Vol. II, Dafermos, C., Feireisl, E. (eds.) Handbook Diff. Equations, Amsterdam: Elsevier/ North Holland, 2005, pp. 159–301

  22. Golse F., Saint-Raymond L.: The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels. Invent. Math. 155(1), 81–161 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Golse F., Saint-Raymond L.: The incompressible Navier-Stokes limit of the Boltzmann equation for hard cutoff potentials. J. Math. Pures Appl. (9) 91(5), 508–552 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Grad, H.: Principles of the kinetic theory of gases. In: Handbuch der Physik (herausgegeben von S. Flügge), Bd. 12, Thermodynamik der Gase. Berlin: Springer-Verlag, 1958, pp. 205–294

  25. Grad, H.: Asymptotic theory of the Boltzmann equation. II. In: Rarefied Gas Dynamics (Proc. 3rd Internat. Sympos., Palais de l’UNESCO, Paris, 1962), Vol. I. New York: Academic Press, 1963, pp. 26–59

  26. Guo, Y., Jang, J.: Global Hilbert Expansion for the Vlasov-Poisson-Boltzmann System. Comm. Math. Phys. (in press). http://arxiv.org/abs/0910.5512v1 [math.AP], 2011

  27. Guo Y.: Classical solutions to the Boltzmann equation for molecules with an angular cutoff. Arch. Ration. Mech. Anal. 169(4), 305–353 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Guo Y.: Boltzmann diffusive limit beyond the Navier-Stokes approximation. Comm. Pure Appl. Math. 59(5), 626–687 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. Guo Y.: Erratum: “Boltzmann diffusive limit beyond the Navier-Stokes approximation”. Comm. Pure Appl. Math. 59(5), 626–687 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Guo Y.: Erratum: “Boltzmann diffusive limit beyond the Navier-Stokes approximation”. Comm. Pure Appl. Math. 60(2), 291–293 (2007)

    Article  MathSciNet  Google Scholar 

  31. Guo Y.: Decay and continuity of Boltzmann equation in bounded domains. Arch. Ration. Mech. Anal. 197(3), 173–809 (2010)

    Article  Google Scholar 

  32. Guo Y., Jang J., Jiang N.: Local Hilbert expansion for the Boltzmann equation. Kinet. Relat. Models 2(1), 205–214 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  33. Hörmander, L.; Lectures on nonlinear hyperbolic differential equations. In: Mathématiques & Applications (Berlin) [Mathematics & Applications], Vol. 26. Berlin: Springer-Verlag, 1997

  34. Lions, P.-L., Masmoudi, N.: From the Boltzmann equations to the equations of incompressible fluid mechanics. I, II. Arch. Ration. Mech. Anal. 158(3), 173–193, 195–211, 2001

    Google Scholar 

  35. Liu T.-P., Yang T., Yu S.-H.: Energy method for Boltzmann equation. Phys. D 188(3-4), 178–192 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. Majda A.: Compressible fluid flow and systems of conservation laws in several space variables. Springer-Verlag, New York (1984)

    Book  MATH  Google Scholar 

  37. Masmoudi, N.: Some recent developments on the hydrodynamic limit of the Boltzmann equation. In: Mathematics & mathematics education (Bethlehem, 2000). 2002, pp. 167–185

  38. Masmoudi, N., Levermore, C.D.: From the Boltzmann equation to an incompressible Navier-Stokes-Fourier system. Arch. Rat. Mech. Anal. in press (2009)

  39. Nishida T.: Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation. Commun. Math. Phys. 61(2), 119–148 (1978)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. Olver, F.W.J.: Asymptotics and special functions. AKP Classics, Wellesley, MA: A K Peters Ltd., 1997. Reprint of the 1974 original. New York: Academic Press

  41. Shatah J., Struwe, M.: Geometric wave equations, Courant Lecture Notes in Mathematics, Vol. 2. New York: New York University Courant Institute of Mathematical Sciences, 1998

  42. Speck, J.: On the questions of local and global well-posedness for the hyperbolic pdes occurring in some relativistic theories of gravity and electromagnetism. PhD dissertation, Piscataway, NJ, 2008

  43. Speck J.: The non-relativistic limit of the Euler-Nordström system with cosmological constant. Rev. Math. Phys. 21(7), 821–876 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  44. Speck J.: Well-posedness for the Euler-Nordström system with cosmological constant. J. Hyperbolic Differ. Equ. 6(2), 313–358 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  45. Stewart J.M.: Non-equilibrium relativistic kinetic theory. New York, Berlin (1971) (English)

    Google Scholar 

  46. Strain R.: Asymptotic stability of the relativistic Boltzmann equation for the Soft Potentials. Commun. Math. Phys. 300(2), 529–597 (2010)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  47. Strain, R.: Coordinates in the relativistic Boltzmann theory. Kinet. Relat. Models 4(1, special issue), 345–359. http://arxiv.org/abs/1011.5093v1 [math.Ap], 2011

  48. Strain R.M.: Global Newtonian limit for the relativistic Boltzmann equation near vacuum. SIAM J. Math. Anal. 42(4), 1568–1601 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Strain, R.M.: An energy method in collisional kinetic theory. Ph.D. dissertation, Division of Applied Mathematics, Brown University, May 2005

  50. Strain R.M., Guo Y.: Stability of the relativistic Maxwellian in a collisional plasma. Commun. Math. Phys. 251(2), 263–320 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  51. Strain R.M., Guo Y.: Almost exponential decay near Maxwellian. Comm. Part. Diff. Eqs. 31(1-3), 417–429 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  52. Strain R.M., Guo Y.: Exponential decay for soft potentials near Maxwellian. Arch. Rat. Mech. Anal. 187(2), 287–339 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  53. Synge J.L.: The relativistic gas. North-Holland Publishing Company, Amsterdam (1957)

    MATH  Google Scholar 

  54. Villani, C.: A review of mathematical topics in collisional kinetic theory, In: Handbook of mathematical fluid dynamics, Vol. I. Amsterdam: North-Holland, 2002, pp. 71–305

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Strain.

Additional information

Communicated by P. Constantin

J.S. was supported by the Commission of the European Communities, ERC Grant Agreement No 208007.

R.M.S. was supported in part by the NSF grant DMS-0901463.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Speck, J., Strain, R.M. Hilbert Expansion from the Boltzmann Equation to Relativistic Fluids. Commun. Math. Phys. 304, 229–280 (2011). https://doi.org/10.1007/s00220-011-1207-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1207-z

Keywords

Navigation