Skip to main content
Log in

Distinguishing Multi-Partite States by Local Measurements

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We analyze the distinguishability norm on the states of a multi-partite system, defined by local measurements. Concretely, we show that the norm associated to a tensor product of sufficiently symmetric measurements is essentially equivalent to a multi-partite generalisation of the non-commutative \({\ell_2}\) -norm (aka Hilbert-Schmidt norm): in comparing the two, the constants of domination depend only on the number of parties but not on the Hilbert spaces dimensions.

We discuss implications of this result on the corresponding norms for the class of all measurements implementable by local operations and classical communication (LOCC), and in particular on the leading order optimality of multi-party data hiding schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambainis, A., Emerson, J.: Quantum t-designs: t-wise independence in the quantum world. In: Proc. 22nd IEEE Conf. Computational Complexity (CCC07). Piscataway, NJ: IEEE 2007, pp. 129–140

  2. Barnum B., Gurvits L.: Separable balls around the maximally mixed multipartite quantum states. Phys. Rev. A 68, 042312 (2003)

    Article  ADS  Google Scholar 

  3. Berger H.N.: The fourth moment method. SIAM J. Comp. 24(6), 1188–1207 (1997)

    Article  Google Scholar 

  4. Brandão F.G.S.L., Christandl M., Yard J.T.: Faithful Squashed Entanglement. Commun. Math. Phys. 306, 805–830 (2011)

    Article  ADS  MATH  Google Scholar 

  5. Brandão, F.G.S.L., Harrow, A.W.: Quantum de Finetti Theorems under Local Measurements with Applications, http://arxiv.org/abs/1210.6763v2 [quant-ph], 2012

  6. Eggeling T., Werner R.F.: Hiding classical data in multi-partite quantum states. Phys. Rev. Lett. 89, 097905 (2003)

    Article  ADS  Google Scholar 

  7. Feller, W.: An Introduction to Probability Theory and its Applications. Wiley Series in Probability and Mathematical Statistics, New York: Wiley and Sons, 1966

  8. Gross D., Audenaert K., Eisert J.: Evenly distributed unitaries: on the structure of unitary designs. J. Math. Phys. 48, 052104 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  9. Harrow, A.W., Montanaro, A., Short, A.J.: Limitations on quantum dimensionality reduction. In: Proc. ICALP’11, LNCS 6755. Berlin-Heidelberg: Springer Verlag, 2011, pp. 86–97

  10. Helstrom, C.W.: Quantum detection and estimation theory. New York: Academic Press, 1976

  11. Holevo A.S.: Statistical decision theory for quantum systems. J. Multivar. Anal. 3, 337–394 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  12. Klappenecker, A., Roetteler, M.: Mutually unbiased bases are complex projective 2-designs. In: Proc. ISIT 2005. Piscataway, NJ: IEEE 2005, pp. 1740–1744

  13. Matthews W., Wehner S., Winter A.: Distinguishability of quantum states under restricted families of measurements with an application to data hiding. Commun. Math. Phys. 291(3), 813–843 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Montanaro, A.: Some applications of hypercontractive inequalities in quantum information theory. http://arXiv.org/abs/1208.0161v3 [quant-ph] 2012

  15. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000

  16. Penrose, R., Rindler, W.: Spinors and Space-Time, Vol. 1: Two-spinor calculus and relativistic fields. Cambridge: Cambridge University Press, 1986

  17. Steele, J.M.: The Cauchy-Schwarz Master Class, Cambridge: Cambridge University Press, 2004

  18. Terhal B.M., DiVincenzo D.P., Leung D.: Hiding Bits in Bell States. Phys. Rev. Lett. 86(25), 5807–5810 (2001)

    Article  ADS  Google Scholar 

  19. DiVincenzo D.P., Leung D., Terhal B.M.: Quantum Data Hiding. IEEE Trans. Inf. Theory 48(3), 580–599 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zauner, G.: Quantum Designs–Foundations of a Non-Commutative Theory of Designs (in German). Ph.D. thesis, Universität Wien, 1999

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Winter.

Additional information

Communicated by M. B. Ruskai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lancien, C., Winter, A. Distinguishing Multi-Partite States by Local Measurements. Commun. Math. Phys. 323, 555–573 (2013). https://doi.org/10.1007/s00220-013-1779-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1779-x

Keywords

Navigation