Skip to main content
Log in

BPS Quivers and Spectra of Complete \({\mathcal{N} = 2}\) Quantum Field Theories

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the BPS spectra of \({\mathcal{N}=2}\) complete quantum field theories in four dimensions. For examples that can be described by a pair of M5 branes on a punctured Riemann surface we explain how triangulations of the surface fix a BPS quiver and superpotential for the theory. The BPS spectrum can then be determined by solving the quantum mechanics problem encoded by the quiver. By analyzing the structure of this quantum mechanics we show that all asymptotically free examples, Argyres-Douglas models, and theories defined by punctured spheres and tori have a chamber with finitely many BPS states. In all such cases we determine the spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seiberg N., Witten E.: Electric - magnetic duality, monopole condensation, and confinement in N =  2 supersymmetric Yang-Mills theory. Nucl. Phys. B426, 19–52 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  2. Seiberg N., Witten E.: Monopoles, duality and chiral symmetry breaking in N =  2 supersymmetric QCD. Nucl. Phys. B431, 484–550 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  3. Kontsevich, M., Soibelman, Y.: “Stability structures, motivic Donaldson-Thomas invariants and cluster transformations”. http://arxiv.org/abs/0811.2435v1 [math.AG], 2008

  4. Gaiotto D., Moore G.W., Neitzke A.: Four-dimensional wall-crossing via three-dimensional field theory. Commun. Math. Phys. 299, 163–224 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Gaiotto, D., Moore, G.W., Neitzke, A.: “Wall-crossing, Hitchin Systems, and the WKB Approximation”. http://arxiv.org/abs/0907.3987v2 [hep-th], 2011

  6. Gaiotto, D., Moore, G.W., Neitzke, A.: “Framed BPS States”. http://arxiv.org/abs/1006.0146v2 [hep-th], 2012

  7. Gaiotto, D., Moore, G.W., Neitzke, A.: “Wall-Crossing in Coupled 2d-4d Systems”. http://arxiv.org/abs/1103.2598v1 [hep-th], 2011

  8. Andriyash, E., Denef, F., Jafferis, D.L., Moore, G.W.: “Wall-crossing from supersymmetric galaxies”. http://arxiv.org/abs/1008.0030v1 [hep-th], 2010

  9. Andriyash, E., Denef, F., Jafferis, D.L., Moore, G.W.: “Bound state transformation walls”. http://arxiv.org/abs/1008.3555v1 [hep-th], 2010

  10. Manschot J., Pioline B., Sen A.: Wall crossing from Boltzmann black hole halos. J. H. E. P. 1107, 059 (2011)

    MathSciNet  Google Scholar 

  11. Joyce, D., Song, Y.: “A theory of generalized Donaldson-Thomas invariants”. http://arxiv.org/abs/0810.5645v6 [math.AG], 2010

  12. Joyce, D., Song, Y.: “A theory of generalized Donaldson-Thomas invariants. II. Multiplicative identities for Behrend functions”. http://arxiv.org/abs/0901.2872v2 [math.AG], 2009

  13. Dimofte T., Gukov S.: Refined, Motivic, and Quantum. Lett. Math. Phys. 91, 1 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dimofte T., Gukov S., Soibelman Y.: Quantum Wall Crossing in N = 2 Gauge Theories. Lett. Math. Phys. 95, 1–25 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Cecotti, S., Vafa, C.: “Classification of complete N =  2 supersymmetric theories in 4 dimensions”. http://arxiv.org/abs/1103.5832v1 [hep-th], 2011, available at intipress.com/site/pub/files/_fulltext/journals/sdg/2013/0018/0001/SDG-2013-0018-0001-00026452.pdf

  16. Gaiotto, D.: “N =  2 dualities”. http://arxiv.org/abs/0904.2715v1 [hep-th], 2009

  17. Witten E.: Solutions Of Four-Dimensional Field Theories Via M Theory. Nucl. Phys. B500, 3–42 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  18. Chacaltana O., Distler J.: Tinkertoys for Gaiotto Duality. JHEP 1011, 099 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  19. Chacaltana, O., Distler, J.: “Tinkertoys for the D N series”. http://arxiv.org/abs/1106.5410v2 [hep-th], 2012

  20. Denef F.: Quantum quivers and Hall / hole halos. JHEP 0210, 023 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  21. Douglas, M.R., Moore, G.W.: “D-branes, Quivers, and ALE Instantons”. http://arxiv.org/abs/hep-th/9603167v1 , 1996

  22. Douglas M.R., Fiol B., Romelsberger C.: Stability and BPS branes. JHEP 0509, 006 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  23. Douglas M.R., Fiol B., Romelsberger C.: The Spectrum of BPS branes on a noncompact Calabi-Yau. JHEP 0509, 057 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  24. Cecotti, S., Neitzke, A., Vafa, C.: “R-Twisting and 4d/2d Correspondences”. http://arxiv.org/abs/1006.3435v2 [hep-th], 2010

  25. Cecotti, S., Del Zotto, M.: “On Arnold’s 14 ‘exceptional’ N =  2 superconformal gauge theories”. http://arxiv.org/abs/1107.5747v1 [hep-th], 2011

  26. Fiol B.: The BPS spectrum of N =  2 SU(N) SYM and parton branes. JHEP 02, 065 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  27. Fiol B., Marino M.: BPS states and algebras from quivers. JHEP 0007, 031 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  28. Klemm A., Mayr P., Vafa C.: BPS states of exceptional non-critical strings. Nucl. Phys. B58, 117–194 (1997)

    MathSciNet  Google Scholar 

  29. Katz S.H., Klemm A., Vafa C.: Geometric engineering of quantum field theories. Nucl. Phys. B497, 173–195 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  30. Klemm A., Lerche W., Mayr P., Vafa C., Warner N.P.: Selfdual strings and N =  2 supersymmetric field theory. Nucl. Phys. B477, 746–766 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  31. Alim, M., Cecotti, S., Cordova, C., Espahbodi, S., Rastogi, A., Vafa, C.: “N =  2 Quantum Field Theories and Their BPS Quivers”. http://arxiv.org/abs/1112.3984v1 [hep-th], 2011

  32. Fomin, S., Zelevinsky, A.: “Cluster algebras I: Foundations”. http://arxiv.org/abs/0104151v1 [math.CO], 2001

  33. Derksen, H., Weyman, J., Zelevinsky, A.: “Quivers with potentials and their representations I: Mutations”. http://arxiv.org/abs/0704.0649v4 [math.RA], 2008

  34. Fomin S., Shapiro M., Thurston D.: Cluster algebras and triangulated surfaces. Part I: Cluster complexes. Acta Math. 201, 83–146 (2006)

    Article  MathSciNet  Google Scholar 

  35. Berenstein, D., Douglas, M.R.: “Seiberg duality for quiver gauge theories”. http://arxiv.org/abs/hep-th/0207027v1 , 2002

  36. Katz S., Mayr P., Vafa C.: Mirror symmetry and Exact Solution of 4D N =  2 Gauge Theories I. Adv. Theor. Math. Phys. 1, 53–114 (1998)

    MathSciNet  Google Scholar 

  37. Joyce D.: On counting special Lagrangian homology 3-spheres. Contemp. Math. 314, 125–151 (2002)

    Article  MathSciNet  Google Scholar 

  38. Shapere, A.D., Vafa, C.: “BPS structure of Argyres-Douglas superconformal theories”. http://arxiv.org/abs/hep-th/9910182v2 [hep-th], 1999

  39. Strebel, K.: Quadratic Differentials. Berlin-Heidelberg-New York: Springer Verlag, 1984

  40. Felikson A., Shapiro M., Tumarkin P.: Skew-symmetric cluster algebras of finite mutation type. J. Eur. Math. Soc. 14, 1135–1180 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Labardini-Fragoso, D.: “Quivers with potentials associated to triangulated surfaces”. http://arxiv.org/abs/0803.1328v3 [math.RT], 2008

  42. Labardini-Fragoso, D.: “Quivers with potentials associated to triangulated surfaces, Part II: Arc representations”. http://arxiv.org/abs/0909.4100v2 [math.RT], 2009

  43. Cerulli Irelli G., Labardini-Fragoso D.: Quivers with potentials associated to triangulated surfaces, Part III: tagged triangulations and cluster monomials. Comp. math. 148(6), 1833–1866 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Bakke Buan, A., Reiten, I.: “Cluster algebras associated with extended Dynkin quivers”. http://arxiv.org/abs/math/0507113v1 [math.RT], 2005

  45. Derksen, H., Owen, T.: “New Graphs of Finite Mutation Type”. http://arxiv.org/abs/0804.0787v1 [math.CO], 2008

  46. Ladkani, S.: “Mutation classes of certain quivers with potentials as derived equivalence classes”. http://arxiv.org/abs/1102.4108v1 [math.RT], 2011

  47. Strominger A.: Special geometry. Commun. Math. Phys. 133, 163–180 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clay Córdova.

Additional information

Communicated by N. A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alim, M., Cecotti, S., Córdova, C. et al. BPS Quivers and Spectra of Complete \({\mathcal{N} = 2}\) Quantum Field Theories. Commun. Math. Phys. 323, 1185–1227 (2013). https://doi.org/10.1007/s00220-013-1789-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1789-8

Keywords

Navigation