Skip to main content
Log in

Cauchy–Laguerre Two-Matrix Model and the Meijer-G Random Point Field

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We apply the general theory of Cauchy biorthogonal polynomials developed in Bertola et al. (Commun Math Phys 287(3):983–1014, 2009) and Bertola et al. (J Approx Th 162(4):832–867, 2010) to the case associated with Laguerre measures. In particular, we obtain explicit formulae in terms of Meijer-G functions for all key objects relevant to the study of the corresponding biorthogonal polynomials and the Cauchy two-matrix model associated with them. The central theorem we prove is that a scaling limit of the correlation functions for eigenvalues near the origin exists, and is given by a new determinantal two-level random point field, the Meijer-G random field. We conjecture that this random point field leads to a novel universality class of random fields parametrized by exponents of Laguerre weights. We express the joint distributions of the smallest eigenvalues in terms of suitable Fredholm determinants and evaluate them numerically. We also show that in a suitable limit, the Meijer-G random field converges to the Bessel random field and hence the behavior of the eigenvalues of one of the two matrices converges to the one of the Laguerre ensemble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balogh F., Bertola M.: Regularity of a vector potential problem and its spectral curve. J. Approx. Th. 161(1), 353–370 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher transcendental functions. Vol. I. Melbourne, FL: Robert E. Krieger Publishing Co. Inc., 1981

  3. Beals, R., Wong. R.: Special functions, Vol. 126 of Cambridge Studies in Advanced Mathematics Cambridge: Cambridge University Press, 2010

  4. Bertola M., Cafasso M.: The Transition between the Gap Probabilities from the Pearcey to the Airy Process–a Riemann-Hilbert Approach. IMRN 2012(7), 1519–1568 (2012)

    MATH  MathSciNet  Google Scholar 

  5. Bertola M., Cafasso M.: Riemann–Hilbert approach to multi-time processes: The Airy and the Pearcey cases. Physica D: Nonlinear Phenomena 241(23–24), 2237–2245 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Bertola M., Gekhtman M., Szmigielski J.: The Cauchy two–matrix model. Commun. Math. Phys. 287(3), 983–1014 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Bertola M., Gekhtman M., Szmigielski J.: Cauchy biorthogonal polynomials. J. Approx. Th. 162(4), 832–867 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bertola M., Gekhtman M., Szmigielski J.: Strong asymptotics for Cauchy biorthogonal polynomials with application to the Cauchy two–matrix model. J. Math. Phys. 54(4), 043517 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  9. Bornemann F.: On the numerical evaluation of Fredholm determinants. Math. Comp. 79(270), 871–915 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Borodin A.: Biorthogonal ensembles. Nucl. Phys. B 536(3), 704–732 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Borodin A., Deift P.: Fredholm determinants, Jimbo-Miwa-Ueno \({\tau}\)-functions, and representation theory. Comm. Pure Appl. Math. 55(9), 1160–1230 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Deift P., Kriecherbauer T., McLaughlin K.T.-R., Venakides S., Zhou X.: Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Comm. Pure Appl. Math. 52(11), 1335–1425 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Duits, M., Kuijlaars, A.B.J., Mo., M.Y.: Asymptotic analysis of the two matrix model with a quartic potential. http://arxiv.org/abs/1210.0097vl [math-ph], 2012

  14. Eynard B., Mehta M.L.: Matrices coupled in a chain. I. Eigenvalue correlations. J. Phys. A 31(19), 4449–4456 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Ince E.L.: Ordinary Differential Equations. Dover Publications, New York (1944)

    MATH  Google Scholar 

  16. Harnad J., Its A.R.: Integrable Fredholm operators and dual isomonodromic deformations. Commun. Math. Phys. 226(3), 497–530 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Its, A.R., Izergin. A.G., Korepin, V.E., Slavnov, N.A.: Differential equations for quantum correlation functions. In Proceedings of the Conference on Yang-Baxter Equations, Conformal Invariance and Integrability in Statistical Mechanics and Field Theory, Int. J. Mod. Phys. 4, 1003–1037 (1990)

  18. Luke, Y.L.: The special functions and their approximations, Vol. I,II. Mathematics in Science and Engineering, Vol. 53. New York: Academic Press, 1969

  19. Mehta, M.L.: Random matrices, Volume 142 of Pure and Applied Mathematics (Amsterdam). Third ed., Amsterdam: Elsevier/Academic Press, 2004

  20. Soshnikov A.: Determinantal random point fields. Usp. Mat. Nauk 55(5(335)), 107–160 (2000)

    Article  MathSciNet  Google Scholar 

  21. Szegö, G.: Orthogonal polynomials. American Mathematical Society Colloquium Publications, Vol. 23. Revised ed. Providence, RI: Amer. Math. Soc., 1959

  22. Tracy C.A., Widom H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159(1), 151–174 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Tracy C.A., Widom H.: Level spacing distributions and the Bessel kernel. Commun. Math. Phys. 161(2), 289–309 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bertola.

Additional information

Communicated by P. Deift

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertola, M., Gekhtman, M. & Szmigielski, J. Cauchy–Laguerre Two-Matrix Model and the Meijer-G Random Point Field. Commun. Math. Phys. 326, 111–144 (2014). https://doi.org/10.1007/s00220-013-1833-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1833-8

Keywords

Navigation