Skip to main content
Log in

CCAP for Universal Discrete Quantum Groups

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that the discrete duals of the free orthogonal quantum groups have the Haagerup property and the completely contractive approximation property. Analogous results hold for the free unitary quantum groups and the quantum automorphism groups of finite-dimensional C*-algebras. The proof relies on the monoidal equivalence between free orthogonal quantum groups and SU q (2) quantum groups, on the construction of a sufficient supply of bounded central functionals for SU q (2) quantum groups, and on the free product techniques of Ricard and Xu. Our results generalize previous work in the Kac setting due to Brannan on the Haagerup property, and due to the second author on the CCAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banica T.: Théorie des représentations du groupe quantique compact libre O(n). C. R. Acad. Sci. Paris Sér. I Math. 322(3), 241–244 (1996)

    MATH  MathSciNet  Google Scholar 

  2. Banica T.: Le groupe quantique compact libre U(n). Commun. Math. Phys. 190(1), 143–172 (1997). doi:10.1007/s002200050237

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Banica T.: Quantum groups and Fuss–Catalan algebras. Commun. Math. Phys. 226(1), 221–232 (2002). doi:10.1007/s002200200613

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Bédos E., Murphy G.J., Tuset L.: Amenability and co-amenability of algebraic quantum groups. II. J. Funct. Anal. 201(2), 303–340 (2003). doi:10.1016/S0022-1236(03)00021-1

    Article  MATH  MathSciNet  Google Scholar 

  5. Bichon J., De Rijdt A., Vaes S.: Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups. Commun. Math. Phys. 262(3), 703–728 (2006). doi:10.1007/s00220-005-1442-2

    Article  ADS  MATH  Google Scholar 

  6. Blanchard E.F., Dykema K.J.: Embeddings of reduced free products of operator algebras. Pac. J. Math. 199(1), 1–19 (2001). doi:10.2140/pjm.2001.199.1

    Article  MATH  MathSciNet  Google Scholar 

  7. Boutonnet R., Houdayer C., Raum S.: Amalgamated free product type III factors with at most one Cartan subalgebra. Compos. Math. 150, 143–174 (2014). doi:10.1112/s0010437x13007537

    Article  MathSciNet  Google Scholar 

  8. Brannan M.: Approximation properties for free orthogonal and free unitary quantum groups. J. Reine Angew. Math. 672, 223–251 (2012)

    MATH  MathSciNet  Google Scholar 

  9. Brannan M.: Reduced operator algebras of trace-preserving quantum automorphism groups. Documenta Math. 18, 1349–1402 (2013)

    MATH  MathSciNet  Google Scholar 

  10. Brown, N.P., Ozawa. N.: C *-algebras and finite-dimensional approximations, Graduate Studies in Mathematics, vol. 88, American Mathematical Society, Providence (2008) ISBN 978-0-8218-4381-9; 0-8218-4381-8

  11. Cipriani F., Franz U., Kula A.: Symmetries of Lévy processes, their Markov semigroups and potential theory on compact quantum groups. J. Funct. Anal. 266(5), 2789–2844 (2014). doi:10.1016/j.jfa.2013.11.026

    Article  MATH  MathSciNet  Google Scholar 

  12. Connes A.: Almost periodic states and factors of type III1. J. Funct. Anal. 16, 415–445 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  13. Connes A.: Classification of injective factors. Cases II1, II, IIIλ, λ ≠ 1. Ann. Math. (2) 104(1), 73–115 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cowling M., Haagerup U.: Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one. Invent. Math. 96(3), 507–549 (1989). doi:10.1007/BF01393695

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Daws M.: Multipliers of locally compact quantum groups via Hilbert C*-modules. J. Lond. Math. Soc. (2) 84(2), 385–407 (2011). doi:10.1112/jlms/jdr013

    Article  MATH  MathSciNet  Google Scholar 

  16. De Commer K.: A note on the von Neumann algebra underlying some universal compact quantum groups. Banach J. Math. Anal. 3(2), 103–108 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. De Rijdt A., Van der Vennet N.: Actions of monoidally equivalent compact quantum groups and applications to probabilistic boundaries. Ann. Inst. Fourier (Grenoble) 60(1), 169–216 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Drabant B., Van Daele A.: Pairing and quantum double of multiplier Hopf algebras. Algebra Represent. Theory 4(2), 109–132 (2001). doi:10.1023/A:1011470032416

    Article  MATH  Google Scholar 

  19. Freslon, A.: Examples of weakly amenable discrete quantum groups. J. Funct. Anal. 265(9), 2164–2187 (2013). doi:10.1016/j.jfa.2013.05.037; arxiv:1207.1470v4 [math.OA]

  20. Haagerup U.: An example of a nonnuclear C*-algebra, which has the metric approximation property. Invent. Math. 50(3), 279–293 (1978/79). doi:10.1007/BF01410082

    Article  ADS  MathSciNet  Google Scholar 

  21. Hajac P.M., Matthes R., Szymański W.: Quantum real projective space, disc and spheres. Algebra Represent. Theory 6(2), 169–192 (2003). doi:10.1023/A:1023288309786

    Article  MATH  Google Scholar 

  22. Houdayer C., Ricard É.: Approximation properties and absence of Cartan subalgebra for free Araki–Woods factors. Adv. Math. 228(2), 764–802 (2011). doi:10.1016/j.aim.2011.06.010

    Article  MATH  MathSciNet  Google Scholar 

  23. Isono, Y.: Examples of factors which have no Cartan subalgebras. preprint (2012). Available at arxiv:1209.1728 [math.OA], to appear in Trans. Am. Math. Soc.

  24. Isono, Y.: On bi-exactness of discrete quantum groups. preprint (2013). Available at arxiv:1308.5103 [math.OA]

  25. Koekoek, R., Swarttouw, R.F.: The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue. Delft University of Technology, Report no. 98-17 (1998)

  26. Kraus J., Ruan Z.-J.: Approximation properties for Kac algebras. Indiana Univ. Math. J. 48(2), 469–535 (1999). doi:10.1512/iumj.1999.48.1660

    Article  MATH  MathSciNet  Google Scholar 

  27. Kustermans, J.: Universal C*-algebraic quantum groups arising from algebraic quantum groups. preprint (1997). Available at arxiv:funct-an/9704006 [math.FA]

  28. Majid, S.: Foundations of quantum group theory. Cambridge University Press, Cambridge (1995). ISBN 0-521-46032-8. doi:10.1017/CBO9780511613104

  29. Ozawa N., Popa S.: On a class of II1 factors with at most one Cartan subalgebra. Ann. Math. (2) 172(1), 713–749 (2010). doi:10.4007/annals.2010.172.713

    Article  MATH  MathSciNet  Google Scholar 

  30. Podleś P., Woronowicz S.L.: Quantum deformation of Lorentz group. Commun. Math. Phys. 130(2), 381–431 (1990)

    Article  ADS  MATH  Google Scholar 

  31. Popa, S., Vaes, S.: Unique Cartan decomposition for II1 factors arising from arbitrary actions of hyperbolic groups, J. Reine Angew. Math. (2013). doi:10.1515/crelle-2012-0104; arxiv:1201.2824 [math.OA]. to appear in print

  32. Pusz W.: Irreducible unitary representations of quantum Lorentz group. Commun. Math. Phys. 152(3), 591–626 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Pytlik T., Szwarc R.: An analytic family of uniformly bounded representations of free groups. Acta Math. 157(3–4), 287–309 (1986). doi:10.1007/BF02392596

    Article  MATH  MathSciNet  Google Scholar 

  34. Ricard É., Xu Q.: Khintchine type inequalities for reduced free products and applications. J. Reine Angew. Math. 599, 27–59 (2006). doi:10.1515/CRELLE.2006.077

    MATH  MathSciNet  Google Scholar 

  35. Ruan Z.-J.: Amenability of Hopf von Neumann algebras and Kac algebras. J. Funct. Anal. 139(2), 466–499 (1996). doi:10.1006/jfan.1996.0093

    Article  MATH  MathSciNet  Google Scholar 

  36. Schürmann M., Skeide M.: Infinitesimal generators on the quantum group SU q (2). Infin. Dimens. Anal. Quantum Prob. Relat. Top. 1(4), 573–598 (1998). doi:10.1142/S0219025798000314

    Article  MATH  Google Scholar 

  37. Sołtan P.M.: Quantum SO(3) groups and quantum group actions on M 2. J. Noncommut. Geom. 4(1), 1–28 (2010). doi:10.4171/JNCG/48

    ADS  MATH  MathSciNet  Google Scholar 

  38. Vaes S., Vergnioux R.: The boundary of universal discrete quantum groups, exactness, and factoriality. Duke Math. J. 140(1), 35–84 (2007). doi:10.1215/S0012-7094-07-14012-2

    Article  MATH  MathSciNet  Google Scholar 

  39. Van Daele A.: An algebraic framework for group duality. Adv. Math. 140(2), 323–366 (1998). doi:10.1006/aima.1998.1775

    Article  MATH  MathSciNet  Google Scholar 

  40. Van Daele A., Wang S.: Universal quantum groups. Int. J. Math. 7(2), 255–263 (1996). doi:10.1142/S0129167X96000153

    Article  MATH  Google Scholar 

  41. Vergnioux R.: Orientation of quantum Cayley trees and applications. J. Reine Angew. Math. 580, 101–138 (2005). doi:10.1515/crll.2005.2005.580.101

    Article  MATH  MathSciNet  Google Scholar 

  42. Voigt C.: The Baum–Connes conjecture for free orthogonal quantum groups. Adv. Math. 227(5), 1873–1913 (2011). doi:10.1016/j.aim.2011.04.008

    Article  MATH  MathSciNet  Google Scholar 

  43. Wang S.: Free products of compact quantum groups. Commun. Math. Phys. 167(3), 671–692 (1995)

    Article  ADS  MATH  Google Scholar 

  44. Wang S.: Quantum symmetry groups of finite spaces. Commun. Math. Phys. 195(1), 195–211 (1998). doi:10.1007/s002200050385

    Article  ADS  MATH  Google Scholar 

  45. Wang, S.: Structure and isomorphism classification of compact quantum groups A u (Q) and B u (Q). J. Oper. Theory 48(3 Suppl.), 573–583 (2002)

  46. Woronowicz S.L.: Twisted SU(2) group. An example of a noncommutative differential calculus. Publ. Res. Inst. Math. Sci. 23(1), 117–181 (1987). doi:10.2977/prims/1195176848

    Article  MATH  MathSciNet  Google Scholar 

  47. Woronowicz S.L.: Compact matrix pseudogroups. Commun. Math. Phys. 111(4), 613–665 (1987). doi:10.1007/BF01219077

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Yamashita.

Additional information

Communicated by Y. Kawahigashi

Makoto Yamashita: on leave from Ochanomizu University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Commer, K., Freslon, A. & Yamashita, M. CCAP for Universal Discrete Quantum Groups. Commun. Math. Phys. 331, 677–701 (2014). https://doi.org/10.1007/s00220-014-2052-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2052-7

Keywords

Navigation