Skip to main content
Log in

Vortex Partition Functions, Wall Crossing and Equivariant Gromov–Witten Invariants

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we identify the problem of equivariant vortex counting in a (2,2) supersymmetric two dimensional quiver gauged linear sigma model with that of computing the equivariant Gromov–Witten invariants of the GIT quotient target space determined by the quiver. We provide new contour integral formulae for the \({\mathcal{I}}\) and \({\mathcal{J}}\)-functions encoding the equivariant quantum cohomology of the target space. Its chamber structure is shown to be encoded in the analytical properties of the integrand. This is explained both via general arguments and by checking several key cases. We show how several results in equivariant Gromov–Witten theory follow just by deforming the integration contour. In particular, we apply our formalism to compute Gromov–Witten invariants of the \({\mathbb{C}^{3}/\mathbb{Z}_{n}}\) orbifold, of the Uhlembeck (partial) compactification of the moduli space of instantons on \({\mathbb{C}^{2}}\), and of A n and D n singularities both in the orbifold and resolved phases. Moreover, we analyse dualities of quantum cohomology rings of holomorphic vector bundles over Grassmannians, which are relevant to BPS Wilson loop algebrae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Shadchin S.: On F-term contribution to effective action. J. High Energy Phys. 8, 52 (2007). arXiv:hep-th/0611278

    Article  ADS  MathSciNet  Google Scholar 

  2. Nekrasov N.A.: Seiberg–Witten Prepotential from instanton counting. Adv. Theor. Math. Phys. 7, 831–864 (2004). arXiv:hep-th/0206161

    Article  MathSciNet  Google Scholar 

  3. Alday L.F., Gaiotto D., Tachikawa Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91, 167–197 (2010). arXiv:0906.3219

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Dimofte T., Gukov S., Hollands L.: Vortex counting and Lagrangian 3-manifolds. Lett. Math. Phys. 98, 225–287 (2011). arXiv:1006.0977

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Bonelli G., Tanzini A., Zhao J.: Vertices, vortices and interacting surface operators. JHEP 1206, 178 (2012). arXiv:1102.0184

    Article  ADS  MathSciNet  Google Scholar 

  6. Bonelli G., Tanzini A., Zhao J.: The Liouville side of the vortex. JHEP 1109, 096 (2011). arXiv:1107.2787

    Article  ADS  MathSciNet  Google Scholar 

  7. Kozcaz C., Pasquetti S., Passerini F., Wyllard N.: Affine sl(N) conformal blocks from N=2 SU(N) gauge theories. JHEP 1101, 045 (2011). arXiv:1008.1412

    Article  ADS  MathSciNet  Google Scholar 

  8. Kanno H., Tachikawa Y.: Instanton counting with a surface operator and the chain-saw quiver. JHEP 1106, 119 (2011). arXiv:1105.0357

    Article  ADS  MathSciNet  Google Scholar 

  9. Bulycheva K., Chen H.-Y., Gorsky A., Koroteev P.: BPS states in omega background and integrability. JHEP 1210, 116 (2012). arXiv:1207.0460

    Article  ADS  MathSciNet  Google Scholar 

  10. Benini, F., Cremonesi, S.: Partition functions of N=(2,2) gauge theories on S 2 and vortices. Commun. Math. Phys. (to appear, 2014). arXiv:1206.2356

  11. Doroud N., Gomis J., Le Floch B., Lee S.: Exact results in D = 2 supersymmetric gauge theories. JHEP 1305, 093 (2013). arXiv:1206.2606

    Article  ADS  MathSciNet  Google Scholar 

  12. Jockers H., Kumar V., Lapan J.M., Morrison D.R., Romo M.: Two-sphere partition functions and Gromov–Witten invariants. Commun. Math. Phys. 325(3), 1139–1170 (2014). arXiv:1208.6244

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Gomis J., Lee S.: Exact Kahler potential from gauge theory and mirror symmetry. JHEP 1304, 019 (2013). arXiv:1210.6022

    Article  ADS  MathSciNet  Google Scholar 

  14. Park D.S., Song J.: The Seiberg–Witten Kahler potential as a two-sphere partition function. JHEP 1301, 142 (2013). arXiv:1211.0019

    Article  ADS  MathSciNet  Google Scholar 

  15. Sharpe E.: Predictions for Gromov–Witten invariants of noncommutative resolutions. J. Geom. Phys. 74, 256–265 (2013). arXiv:1212.5322

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Honma Y., Manabe M.: Exact Kähler potential for Calabi–Yau fourfolds. J. High Energy Phys. 5, 102 (2013). arXiv:1302.3760

    Article  ADS  MathSciNet  Google Scholar 

  17. Halverson J., Kumar V., Morrison D.R.: New methods for characterizing phases of 2D supersymmetric gauge theories. J. High Energy. Phys 2013, 143 (2013). arXiv:1305.3278

    Article  MathSciNet  Google Scholar 

  18. Sharpe E.: A few Ricci-flat stacks as phases of exotic GLSM’s. Phys. Lett. B. 726(1–3), 390–395 (2013). arXiv:1306.5440

    Article  ADS  Google Scholar 

  19. Givental A.B.: Equivariant Gromov–Witten Invariants. Int. Math. Res. Notices 1996, 613–663 (1996). arXiv:alg-geom/9603021

    Article  MATH  MathSciNet  Google Scholar 

  20. Ciocan-Fontanine I., Kim B., Maulik D.: Stable quasimaps to GIT quotients. J. Geom. Phys. 75, 17–47 (2014). arXiv:1106.3724

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Kapustin, A., Willett, B.: Wilson loops in supersymmetric Chern-Simons-matter theories and duality. ArXiv e-prints (2013). arXiv:1302.2164

  22. Witten E.: Phases of N=2 theories in two-dimensions. Nucl. Phys. B 403, 159–222 (1993). arXiv:hep-th/9301042

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Coates T., Corti A., Lee Y.-P., Tseng H.-H.: The quantum orbifold cohomology of weighted projective spaces. Acta. Math. 202, 139–193 (2009). arXiv:math/0608481

    Article  MATH  MathSciNet  Google Scholar 

  24. Bryan J., Graber T.: The crepant resolution conjecture. Proc. Symp. Pure Math. 80.1, 1–20 (2009). arXiv:math/0610129

    Article  Google Scholar 

  25. Bershadsky M., Cecotti S., Ooguri H., Vafa C.: Holomorphic anomalies in topological field theories. Nucl.Phys. B 405, 279–304 (1993). arXiv:hep-th/9302103

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Dubrovin, B.: Geometry of 2-D topological field theories. In: Integrable Systems and Quantum Groups (Montecatini Terme, 1993). Lecture Notes in Mathematics, vol. 1620, pp. 120–348. Springer, New York (1996). arXiv:hep-th/9407018

  27. Coates T., Givental A.: Quantum Riemann—Roch, Lefschetz and Serre. Ann. Math. 165, 15–53 (2007). arXiv:math/0110142

    Article  MATH  MathSciNet  Google Scholar 

  28. Bonelli G., Sciarappa A., Tanzini A., Vasko P.: The stringy instanton partition function. J. High Energy. Phys. 2014, 38 (2014). arXiv:1306.0432

    Article  MathSciNet  Google Scholar 

  29. Forbes B., Jinzenji M.: J functions, non-nef toric varieties and equivariant local mirror symmetry of curves. Int. J. Mod. Phys. A 22, 2327–2360 (2007). arXiv:math/0603728

    Article  MATH  MathSciNet  Google Scholar 

  30. Aganagic M., Bouchard V., Klemm A.: Topological strings and (almost) modular forms. Commun. Math. Phys. 277, 771–819 (2008). arXiv:hep-th/0607100

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Coates T., Corti A., Iritani H., Tseng H.-H.: Computing genus-zero twisted Gromov–Witten Invariants. Duke Math J. 147(3), 377–438 (2009). arXiv:math/0702234

    Article  MATH  MathSciNet  Google Scholar 

  32. Coates, T.: Wall-crossings in toric Gromov–Witten Theory II: local examples. ArXiv e-prints (2008). arXiv:0804.2592

  33. Brini A., Tanzini A.: Exact results for topological strings on resolved Y**p,q singularities. Commun. Math. Phys. 289, 205–252 (2009). arXiv:0804.2598

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Bertram A., Ciocan-Fontanine I., Kim B.: Two proofs of a conjecture of Hori and Vafa. Duke Math. J. 126(1), 101–136 (2005). arXiv:math/0304403

    Article  MATH  MathSciNet  Google Scholar 

  35. Hori, K., Vafa, C.: Mirror symmetry. arXiv:hep-th/0002222

  36. Bertram A., Ciocan-Fontanine I., Kim B.: Gromov–Witten invariants for abelian and nonabelian quotients. J. Algebraic Geom. 17, 275–294 (2008). arXiv:math/0407254

    Article  MATH  MathSciNet  Google Scholar 

  37. Kronheimer P.B., Nakajima H.: Yang–Mills instantons on ALE gravitational instantons. Math. Ann. 288, 263–307 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  38. Ciocan-Fontanine, I., Diaconescu, D.-E., Kim, B.: From I to J in two dimensional (4,4) quiver gauge theories (preprint)

  39. Maulik, D., Oblomkov, A.: Quantum cohomology of the Hilbert scheme of points on A n -resolutions. J. Am. Math. Soc. 22, 1055–1091 (2009). arXiv:0802.2737 [math.AG]

  40. Brini A.: The Local Gromov–Witten theory of \({\{\{C\} \{P\}^\wedge{}1\}}\) and integrable hierarchies. Commun. Math. Phys. 313, 571–605 (2012). arXiv:1002.0582

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. Givental A., Lee Y.-P.: Quantum K-theory on flag manifolds, finite-difference Toda lattices and quantum groups. Invent. Math. 151, 193–219 (2003). arXiv:math/0108105

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. Nieri, F., Pasquetti, S., Passerini, F.: 3d and 5d gauge theory partition functions as q-deformed CFT correlators. arXiv:1303.2626

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Bonelli.

Additional information

Communicated by H.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonelli, G., Sciarappa, A., Tanzini, A. et al. Vortex Partition Functions, Wall Crossing and Equivariant Gromov–Witten Invariants. Commun. Math. Phys. 333, 717–760 (2015). https://doi.org/10.1007/s00220-014-2193-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2193-8

Keywords

Navigation