Skip to main content
Log in

Hadamard States for the Linearized Yang–Mills Equation on Curved Spacetime

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct Hadamard states for the Yang–Mills equation linearized around a smooth, space-compact background solution. We assume the spacetime is globally hyperbolic and its Cauchy surface is compact or equal \({\mathbb{R}^d}\).

We first consider the case when the spacetime is ultra-static, but the background solution depends on time. By methods of pseudodifferential calculus we construct a parametrix for the associated vectorial Klein–Gordon equation. We then obtain Hadamard two-point functions in the gauge theory, acting on Cauchy data. A key role is played by classes of pseudodifferential operators that contain microlocal or spectral type low-energy cutoffs.

The general problem is reduced to the ultra-static spacetime case using an extension of the deformation argument of Fulling, Narcowich and Wald.

As an aside, we derive a correspondence between Hadamard states and parametrices for the Cauchy problem in ordinary quantum field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araki H., Shiraishi M.: On quasi-free states of canonical commutation relations I. Publ. RIMS Kyoto Univ. 7, 105–120 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  2. Benini, M.: Optimal Space of Linear Classical Observables for Maxwell k-Forms Via Spacelike and Timelike Compact de Rham Cohomologies. arXiv:1401.7563 (2014)

  3. Bär, C., Ginoux, N.: Classical and Quantum Fields on Lorentzian Manifolds. Global Differential Geometry. Springer, Berlin (2012)

  4. Bär, C., Ginoux, N., Pfäffle, F.: Wave equation on Lorentzian manifolds and quantization. In: ESI Lectures in Mathematics and Physics, EMS (2007)

  5. Choquet-Bruhat, Y.: Yang–Mills Fields on Lorentzian Manifolds. Mechanics, Analysis and Geometry: 200 Years After Lagrange. North-Holland Delta Series, North Holland (1991)

  6. Choquet-Bruhat Y., Christodoulou D.: Existence of global solutions of the Yang–Mills, Higgs and spinor fields equations in 3 + 1 dimensions. Ann. Sci. École Norm. Sup. 14, 481–506 (1981)

    MATH  MathSciNet  Google Scholar 

  7. Cycon H.L., Froese R., Kirsch W., Simon B.: Schrödinger Operators with Applications to Quantum Mechanics and Global Geometry. Springer, New York (1987)

    Google Scholar 

  8. Chruściel P.T., Shatah J.: Global existence of solutions of the Yang–Mills equations on globally hyperbolic four dimensional Lorentzian manifolds. Asian J. Math. 1, 530–548 (1997)

    MATH  MathSciNet  Google Scholar 

  9. Dereziński, J.: Quantum Fields with Classical Perturbations. arXiv:1307.1162 (2013)

  10. Dütsch M., Fredenhagen K.: A local (perturbative) construction of observables in gauge theories: the example of QED. Commun. Math. Phys. 203, 71 (1999)

    Article  ADS  MATH  Google Scholar 

  11. Dereziński J., Gérard C.: Mathematics of quantization and quantum fields. Cambridge Monographs in Mathematical Physics. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  12. Dimock J.: Dirac quantum fields on a manifold. Trans. Am. Math. Soc. 269(1), 133–147 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dimock J.: Quantized electromagnetic field on a manifold. Rev. Math. Phys. 4(02), 223–233 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dappiaggi C., Hack T.-P., Sanders K.: Electromagnetism, local covariance, the Aharonov–Bohm effect and Gauss’ law. Commun. Math. Phys. 328, 625–667 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Dappiaggi C., Siemssen D.: Hadamard states for the vector potential on asymptotically flat spacetimes. Rev. Math. Phys. 25, 1350002 (2013)

    Article  MathSciNet  Google Scholar 

  16. Fulling S.A., Narcowich F.J., Wald R.M.: Singularity structure of the two-point function in quantum field theory in curved spacetime, II. Ann. Phys. 136, 243–272 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  17. Fewster C.J., Pfenning M.J.: A quantum weak energy inequality for spin-one fields in curved spacetime. J. Math. Phys. 44, 4480 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Finster, F., Strohmaier, A.: Gupta–Bleuler Quantization of the Maxwell Field in Globally Hyperbolic Space–Times. arXiv:1307.1632 (2013)

  19. Furlani E.P.: Quantization of the electromagnetic field on static spacetimes. J. Math. Phys. 36(3), 1063–1079 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Furlani E.P.: Quantization of massive vector fields in curved spacetime. J. Math. Phys. 40, 2611(1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Gérard C., Wrochna M.: Construction of Hadamard states by pseudo-differential calculus. Commun. Math. Phys. 325(2), 713–755 (2014)

    Article  ADS  MATH  Google Scholar 

  22. Hack, T.-P., Schenkel, A.: Linear bosonic and fermionic quantum gauge theories on curved spacetimes. Gen. Rel. Grav. 1–34 (2012)

  23. Hollands, S.: The hadamard condition for dirac fields and adiabatic states on Robertson–Walker spacetimes. Commun. Math. Phys. 216, 635–661 (2001)

  24. Hollands S.: Renormalized quantum Yang–Mills fields in curved spacetime. Rev. Math. Phys. 20(09), 1033–1172 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hörmander L.: The analysis of linear partial differential operators I. Distribution Theory and Fourier Analysis. Springer, Berlin (1985)

    Google Scholar 

  26. Junker, W.: Adiabatic Vacua and Hadamard States for Scalar Quantum Fields on Curved Spacetime. PhD thesis, University of Hamburg 1995

  27. Khavkine, I.: Characteristics, Conal Geometry and Causality in Locally Covariant Field Theory. arXiv:1211.1914 (2012)

  28. Marathe K.B., Martucci G.: Mathematical foundations of gauge theories. Studies in Mathematical Physics, vol. 5. North-Holland, Amsterdam (1992)

    Google Scholar 

  29. Mühlhoff R.: Cauchy problem and green’s functions for first order differential operators and algebraic quantization. J. Math. Phys. 52, 022303 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  30. Pfenning M.J.: Quantization of the maxwell field in curved spacetimes of arbitrary dimension. Class. Quantum Grav. 26(13), 135017 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  31. Rejzner, K.: Remarks on Local Gauge Invariance in Perturbative Algebraic Quantum Field Theory. arXiv:1301.7037 (2013)

  32. Segal I.: The cauchy problem for the Yang–Mills equations. J. Funct. Anal. 33(2), 175–194 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  33. Sahlmann H., Verch R.: Microlocal spectrum condition and hadamard form for vector-valued quantum fields in curved spacetime. Rev. Math. Phys. 13(10), 1203–1246 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  34. Taylor M.: Pseudo-Differential Operators and Nonlinear PDE. Birkhäuser, Basel (1991)

    Google Scholar 

  35. Wrochna M.: Quantum field theory in static external potentials and hadamard states. Ann. Henri Poincaré 13(8), 1841–1871 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Wrochna, M.: Singularities of Two-Point Functions in Quantum Field Theory. PhD thesis, University of Göttingen (2013)

  37. Wrochna, M., Zahn, J.: Classical Phase Space and Hadamard States in the BRST Formalism for Gauge Field Theories on Curved Spacetime. arXiv:1407.8079 (2014)

  38. Zahn J.: The renormalized locally covariant dirac field. Rev. Math. Phys. 26, 1330012 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Gérard.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gérard, C., Wrochna, M. Hadamard States for the Linearized Yang–Mills Equation on Curved Spacetime. Commun. Math. Phys. 337, 253–320 (2015). https://doi.org/10.1007/s00220-015-2305-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2305-0

Keywords

Navigation