Skip to main content
Log in

Resurgent Transseries and the Holomorphic Anomaly: Nonperturbative Closed Strings in Local \({\mathbb{C}\mathbb{P}^2}\)

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The holomorphic anomaly equations describe B-model closed topological strings in Calabi–Yau geometries. Having been used to construct perturbative expansions, it was recently shown that they can also be extended past perturbation theory by making use of resurgent transseries. These yield formal nonperturbative solutions, showing integrability of the holomorphic anomaly equations at the nonperturbative level. This paper takes such constructions one step further by working out in great detail the specific example of topological strings in the mirror of the local \({\mathbb{C}\mathbb{P}^2}\) toric Calabi–Yau background, and by addressing the associated (resurgent) large-order analysis of both perturbative and multi-instanton sectors. In particular, analyzing the asymptotic growth of the perturbative free energies, one finds contributions from three different instanton actions related by \({\mathbb{Z}_3}\) symmetry, alongside another action related to the Kähler parameter. Resurgent transseries methods then compute, from the extended holomorphic anomaly equations, higher instanton sectors and it is shown that these precisely control the asymptotic behavior of the perturbative free energies, as dictated by resurgence. The asymptotic large-order growth of the one-instanton sector unveils the presence of resonance, i.e., each instanton action is necessarily joined by its symmetric contribution. The structure of different resurgence relations is extensively checked at the numerical level, both in the holomorphic limit and in the general nonholomorphic case, always showing excellent agreement with transseries data computed out of the nonperturbative holomorphic anomaly equations. The resurgence relations further imply that the string free energy displays an intricate multi-branched Borel structure, and that resonance must be properly taken into account in order to describe the full transseries solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998). arXiv:hep-th/9711200

  2. Aharony, O., Gubser, S.S., Maldacena, J.M., Ooguri, H., Oz, Y.: Large N field theories, string theory and gravity. Phys. Rept. 323, 183 (2000). arXiv:hep-th/9905111

  3. Dijkgraaf, R., Vafa C.: Matrix models, topological strings, and supersymmetric gauge theories. Nucl. Phys. B644, 3 (2002). arXiv:hep-th/0206255

  4. Dijkgraaf, R., Vafa, C.: On geometry and matrix models. Nucl. Phys. B644, 21 (2002). arXiv:hep-th/0207106

  5. Eynard, B., Mariño, M., Orantin, N.: Holomorphic anomaly and matrix models. JHEP 0706, 058 (2007). arXiv:hep-th/0702110

  6. Mariño, M.: Nonperturbative effects and nonperturbative definitions in matrix models and topological strings. JHEP 0812, 114 (2008). arXiv:0805.3033 [hep-th]

  7. Eynard, B., Mariño, M.: A holomorphic and background independent partition function for matrix models and topological strings. J. Geom. Phys. 61, 1181 (2011). arXiv:0810.4273 [hep-th]

  8. Hatsuda, Y., Mariño, M., Moriyama, S., Okuyama, K.: Nonperturbative effects and the refined topological string. JHEP 1409, 168 (2014). arXiv:1306.1734 [hep-th]

  9. Källén, J., Mariño, M.: Instanton effects and quantum spectral curves. arXiv:1308.6485 [hep-th]

  10. Huang, M.-X., Wang, X.-F.: Topological strings and quantum spectral problems. JHEP 1409, 150 (2014). arXiv:1406.6178 [hep-th]

  11. Couso-Santamaría, R., Edelstein, J.D., Schiappa, R., Vonk, M.: Resurgent transseries and the holomorphic anomaly. arXiv:1308.1695 [hep-th]

  12. Shenker, S.H.: The Strength of nonperturbative effects in string theory. In: Cargèse Workshop on Random Surfaces, Quantum Gravity and Strings (1990)

  13. Gross D.J., Periwal V.: String perturbation theory diverges. Phys. Rev. Lett. 60, 2105 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  14. Aniceto, I., Schiappa, R.: Nonperturbative ambiguities and the reality of resurgent transseries. Commun. Math. Phys. (2015) (in press), arXiv:1308.1115 [hep-th]

  15. Grassi, A., Mariño, M., Zakany, S.: Resumming the String Perturbation Series. arXiv:1405.4214 [hep-th]

  16. écalle, J.: Les Fonctions Résurgentes. Prépub. Math. Université Paris–Sud 81–05 (1981)

  17. écalle, J.: Les Fonctions Résurgentes. Prépub. Math. Université Paris–Sud 81–06 (1981)

  18. écalle, J.: Les Fonctions Résurgentes. Prépub. Math. Université Paris–Sud 85–05 (1985)

  19. Candelpergher B., Nosmas J.C., Pham F.: Premiers Pas en Calcul étranger. Ann. Inst. Fourier 43, 201 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  20. Seara T.M., Sauzin D.: Resumació de Borel i Teoria de la Ressurgència. Butl. Soc. Catalana Mat. 18, 131 (2003)

    MathSciNet  Google Scholar 

  21. Bender C.M., Wu T.T.: Anharmonic oscillator 2: a study of perturbation theory in large order. Phys. Rev. D 7, 1620 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  22. Zinn-Justin J.: Perturbation series at large orders in quantum mechanics and field theories: application to the problem of resummation. Phys. Rept. 70, 109 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  23. Mariño, M.: Open string amplitudes and large-order behavior in topological string theory. JHEP 0803, 060 (2008). arXiv:hep-th/0612127

  24. Mariño, M., Schiappa, R., Weiss, M.: Nonperturbative effects and the large-order behavior of matrix models and topological strings. Commun. Number Theor. Phys. 2, 349 (2008). arXiv:0711.1954 [hep-th]

  25. Mariño, M., Schiappa, R., Weiss, M.: Multi-instantons and multi-cuts. J. Math. Phys. 50, 052301 (2009). arXiv:0809.2619 [hep-th]

  26. Garoufalidis, S., Mariño, M.: Universality and asymptotics of graph counting problems in non-orientable surfaces. J. Combin. Theory Ser. A 117(6), 715–740 (2010). arXiv:0812.1195 [math.CO]

  27. Pasquetti, S., Schiappa, R.: Borel and stokes nonperturbative phenomena in topological string theory and c = 1 matrix models. Ann. Henri Poincaré 11, 351 (2010). arXiv:0907.4082 [hep-th]

  28. Mariño, M., Pasquetti, S., Putrov, P.: Large N duality beyond the genus expansion. JHEP 1007, 074 (2010). arXiv:0911.4692 [hep-th]

  29. Garoufalidis, S., Its, A., Kapaev, A., Mariño, M.: Asymptotics of the instantons of Painlevé I. Int. Math. Res. Not. 2012 561 (2012). arXiv:1002.3634 [math.CA]

  30. Klemm, A., Mariño, M., Rauch, M.: Direct integration and non-perturbative effects in matrix models. JHEP 1010, 004 (2010). arXiv:1002.3846 [hep-th]

  31. Drukker, N., Mariño, M., Putrov, P.: Nonperturbative aspects of abjm theory. JHEP 1111, 141 (2011). arXiv:1103.4844 [hep-th]

  32. Aniceto, I., Schiappa, R., Vonk, M.: The resurgence of instantons in string theory. Commun. Number Theor. Phys. 6, 339 (2012). arXiv:1106.5922 [hep-th]

  33. Schiappa, R., Vaz, R.: The Resurgence of Instantons: Multi-Cut Stokes Phases and the Painlevé II Equation. Commun. Math. Phys. 330(2), 655–721 (2014). arXiv:1302.5138 [hep-th]

  34. Argyres, P., Ünsal, M.: A semiclassical realization of infrared renormalons. Phys. Rev. Lett. 109, 121601 (2012). arXiv:1204.1661 [hep-th]

  35. Argyres, P.C., Ünsal, M.: The semiclassical expansion and resurgence in gauge theories: new perturbative, instanton, bion, and renormalon effects. JHEP 1208, 063 (2012). arXiv:1206.1890 [hep-th]

  36. Dunne, G.V., Ünsal, M.: Resurgence and transseries in quantum field theory: the \({\mathbb{C}\mathbb{P}^{N-1}}\) Model. JHEP 1211, 170 (2012). arXiv:1210.2423 [hep-th]

  37. Dunne, G.V., Ünsal, M.: Continuity and resurgence: towards a continuum definition of the \({\mathbb{C}\mathbb{P}^{N-1}}\) Model. Phys. Rev. D87, 025015 (2013). arXiv:1210.3646 [hep-th]

  38. Mariño, M.: Lectures on non-perturbative effects in large N gauge theories, matrix models and strings. Fortschr. Phys. 62, 455–540 (2014). arXiv:1206.6272 [hep-th]

  39. Bessis D., Itzykson C., Zuber J.B.: Quantum field theory techniques in graphical enumeration. Adv. Appl. Math. 1, 109 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  40. Di Francesco, P., Ginsparg, P.H., Zinn-Justin, J.: 2d gravity and random matrices. Phys. Rept. 254, 1 (1995). arXiv:hep-th/9306153

  41. Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Holomorphic anomalies in topological field theories. Nucl. Phys. B405, 279 (1993). arXiv:hep-th/9302103

  42. Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Kodaira–Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165, 311 (1994). arXiv:hep-th/9309140

  43. Ooguri, H.: Note on Holomorphic Anomalies in Topological Field Theories. In: Toyonaka 1994, Group Theoretical Methods in Physics (1994)

  44. Huang, M.-X., Klemm, A., Quackenbush, S.: Topological string theory on compact Calabi–Yau: modularity and boundary conditions. Lect. Notes Phys. 757, 45 (2009). arXiv:hep-th/0612125

  45. Grimm, T.W., Klemm, A., Mariño, M., Weiss, M.: Direct integration of the topological string. JHEP 0708, 058 (2007). arXiv:hep-th/0702187

  46. Haghighat, B., Klemm, A., Rauch, M.: Integrability of the holomorphic anomaly equations. JHEP 0810, 097 (2008). arXiv:0809.1674 [hep-th]

  47. Edgar, G.A.: Transseries for beginners. Real Anal. Exchange 35, 253 (2009). arXiv:0801.4877 [math.RA]

  48. Hori, K., Vafa, C.: Mirror symmetry. arXiv:hep-th/0002222

  49. David F.: Phases of the Large N Matrix Model and Nonperturbative Effects in 2d Gravity. Nucl. Phys. B 348, 507 (1991)

    Article  ADS  Google Scholar 

  50. David, F.: Nonperturbative effects in matrix models and vacua of two-dimensional gravity. Phys. Lett. B302, 403 (1993). arXiv:hep-th/9212106

  51. Kazakov, V.A., Kostov, I.K.: Instantons in Noncritical Strings from the Two-Matrix Model. In: From Fields to Strings (2004). arXiv:hep-th/0403152

  52. Klemm, A., Zaslow, E.: Local Mirror Symmetry at Higher Genus. In: Proceedings of the Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submonifolds, AMS/IP Studies in Adv. Math. 23 (2001). arXiv:hep-th/9906046

  53. Mariño, M.: Chern–Simons theory and topological strings. Rev. Mod. Phys. 77, 675 (2005). arXiv:hep-th/0406005

  54. Mariño, M.: Les Houches Lectures on Matrix Models and Topological Strings. arXiv:hep-th/0410165

  55. Neitzke, A., Vafa, C.: Topological strings and their physical applications. arXiv:hep-th/0410178

  56. Vonk, M.: A mini-course on topological strings. arXiv:hep-th/0504147

  57. Alim, M.: Lectures on mirror symmetry and topological string theory. arXiv:1207.0496 [hep-th]

  58. Diaconescu, D.E., Gomis, J.: Fractional branes and boundary states in orbifold theories. JHEP 0010, 001 (2000). arXiv:hep-th/9906242

  59. Aganagic, M., Bouchard, V., Klemm, A.: Topological Strings and (Almost) Modular Forms. Commun. Math. Phys. 277, 771 (2008). arXiv:hep-th/0607100

  60. Alim, M., Scheidegger, E., Yau, S.-T., Zhou, J.: Special polynomial rings, quasi modular forms and duality of topological strings. Adv. Theor. Math. Phys. 18(2), 401–467 (2014). arXiv:1306.0002 [hep-th]

  61. Yamaguchi, S., Yau, S.-T.: Topological string partition functions as polynomials. JHEP 0407, 047 (2004). arXiv:hep-th/0406078

  62. Alim, M., Lange, J.D.: Polynomial structure of the (Open) topological string partition function. JHEP 0710, 045 (2007). arXiv:0708.2886 [hep-th]

  63. Alim, M., Lange, J.D., Mayr, P.: Global properties of topological string amplitudes and orbifold invariants. JHEP 1003, 113 (2010). arXiv:0809.4253 [hep-th]

  64. Ghoshal, D., Vafa, C.: c =  1 String as the topological theory of the conifold. Nucl. Phys. B453, 121 (1995). arXiv:hep-th/9506122

  65. Antoniadis, I., Gava, E., Narain, K.S., Taylor, T.R.: \({\mathcal{N} = 2}\) Type II heterotic duality and higher derivative F-Terms. Nucl. Phys. B455, 109 (1995). arXiv:hep-th/9507115

  66. Gopakumar, R., Vafa, C.: M-Theory and topological strings 1. arXiv:hep-th/9809187

  67. Gopakumar, R., Vafa, C.: M-Theory and topological strings 2. arXiv:hep-th/9812127

  68. Huang, M.-X., Klemm, A.: Holomorphic anomaly in gauge theories and matrix models. JHEP 0709, 054 (2007). arXiv:hep-th/0605195

  69. Mariño, M., Moore, G.W.: Counting higher genus curves in a Calabi–Yau Manifold. Nucl. Phys. B543, 592 (1999). arXiv:hep-th/9808131

  70. Faber, C., Pandharipande, R.: Hodge Integrals and Gromov–Witten Theory. Invent. Math. 139 173 (2000). arXiv:hep-th/9810173

  71. Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  72. Bender, C.M., Orszag, S.A.: Advanced Mathematical Methods for Scientists and Engineers. Springer, New York (1999)

  73. Başar, G., Dunne, G.V., Ünsal, M.: Resurgence theory, ghost-instantons, and analytic continuation of path integrals. JHEP 1310, 041 (2013). arXiv:1308.1108 [hep-th]

  74. Howls C.J., Langman P.J., Olde Daalhuis A.B.: On the higher-order stokes phenomenon. Proc. R. Soc. Lond. A 460, 2285 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  75. Balian R., Parisi G., Voros A.: Discrepancies from asymptotic series and their relation to complex classical trajectories. Phys. Rev. Lett. 41, 1141 (1978)

    Article  ADS  Google Scholar 

  76. Raczka P.A.: Summation of the perturbation expansion and the QCD corrections to \({\tau}\) decay. Phys. Rev. D 43, R9 (1991)

    Article  ADS  Google Scholar 

  77. Pindor, M.: Padé Approximants and Borel Summation for QCD Perturbation Expansions. arXiv:hep-th/9903151

  78. Bogomolny E.B.: Calculation of instanton–anti-instanton contributions in quantum mechanics. Phys. Lett. B 91, 431 (1980)

    Article  ADS  Google Scholar 

  79. Zinn-Justin J.: Multi-instanton contributions in quantum mechanics. Nucl. Phys. B 192, 125 (1981)

    Article  ADS  Google Scholar 

  80. Aniceto, I., Başar, G., Schiappa, R., Ünsal, M.: (to appear)

  81. Couso-Santamaría, R., Edelstein, J.D., Schiappa, R., Vonk, M.: Resurgent Transseries and the Holomorphic Anomaly III. work in progress

  82. Aganagic, M., Mariño, M., Vafa, C.: All loop topological string amplitudes from Chern–Simons theory. Commun. Math. Phys. 247, 467 (2004). arXiv:hep-th/0206164

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Schiappa.

Additional information

Communicated by H. Ooguri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Couso-Santamaría, R., Edelstein, J.D., Schiappa, R. et al. Resurgent Transseries and the Holomorphic Anomaly: Nonperturbative Closed Strings in Local \({\mathbb{C}\mathbb{P}^2}\) . Commun. Math. Phys. 338, 285–346 (2015). https://doi.org/10.1007/s00220-015-2358-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2358-0

Keywords

Navigation