Skip to main content
Log in

Bilinear Equations on Painlevé τ Functions from CFT

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In 2012, Gamayun, Iorgov, and Lisovyy conjectured an explicit expression for the Painlevé VI τ function in terms of the Liouville conformal blocks with central charge c = 1. We prove that the proposed expression satisfies Painlevé VI τ function bilinear equations (and therefore prove the conjecture). The proof reduces to the proof of bilinear relations on conformal blocks. These relations were studied using the embedding of a direct sum of two Virasoro algebras into a sum of Majorana fermion and Super Virasoro algebra. In the framework of the AGT correspondence, the bilinear equations on the conformal blocks can be interpreted in terms of instanton counting on the minimal resolution of \({\mathbb{C}^2/\mathbb{Z}_2}\) (similarly to Nakajima–Yoshioka blow-up equations).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alba V.A., Fateev V.A., Litvinov A.V., Tarnopolsky G.M.: On combinatorial expansion of the conformal blocks arising from AGT conjecture. Lett. Math. Phys. 98, 33–64 (2011) arXiv:1012.1312

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Alday L.F., Gaiotto D., Tachikawa Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91, 167–197 (2010) arXiv:0906.3219

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Belavin A., Bershtein M., Feigin B., Litvinov A., Tarnopolsky G.: Instanton moduli spaces and bases in coset conformal field theory. Commun. Math. Phys. 319(1), 269–301 (2013) arXiv:1111.2803

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Belavin A., Polyakov A., Zamolodchikov A.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241, 333 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Belavin V.A.: \({\mathcal{N}=1}\) SUSY conformal block recursive relations. Theor. Math. Phys. 152, 1275 (2007) arXiv:hep-th/0611295

    Article  MathSciNet  MATH  Google Scholar 

  6. Belavin, V.A.: On the N = 1 super Liouville four-point functions, Nucl. Phys. B 798, 423 (2008). arXiv:0705.1983

  7. Belavin, V., Feigin, B.: Super Liouville conformal blocks from \({\mathcal{N}=2}\) SU(2) quiver gauge theories. JHEP 1107, 079 (2011). arXiv:1105.5800

  8. Bershtein, M., Feigin, B., Litvinov, A.: Coupling of two conformal field theories and Nakajima–Yoshioka blow-up equations. arXiv:1310.7281

  9. Bonelli, G., Maruyoshi, K., Tanzini, A.: Instantons on ALE spaces and super liouville conformal field theories. JHEP 1108, 056 (2011). arXiv:1106.2505

  10. Bonelli, K., Maruyoshi, G., Tanzini, A.: Gauge theories on ALE space and super liouville correlation functions. Lett. Math. Phys. 101, 103–124 (2012). arXiv:1107.4609

  11. Bruzzo, U., Pedrini, M., Sala, F., Szabo, R.J.: Framed sheaves on root stacks and supersymmetric gauge theories on ALE spaces. arXiv:1312.5554

  12. Crnkovic C., Paunov R., Sotkov G., Stanishkov M.: Fusions of conformal models. Nucl. Phys. B 336, 637 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  13. Feigin, B., Fuchs, D.: Representations of the Virasoro algebra. In: Representations of Lie Groups and Related Topics, vol. 465. Advanced Studies in Contemporary Mathematics, vol. 7. Gordon and Breach, New York (1990)

  14. Frenkel E., Ben-Zvi D.: Vertex Algebras and Algebraic Curves. Mathematical Surveys and Monographs, vol. 88. American Mathematical Society, Providence (2004)

    Book  Google Scholar 

  15. Gaiotto D.: Asymptotically free N = 2 theories and irregular conformal blocks. J. Phys. Conf. Ser. 462, 012014 (2013)

    Article  Google Scholar 

  16. Gamayun, O., Iorgov, N., Lisovyy, O.: Conformal field theory of Painlevé VI. JHEP 1210, 38 (2012). arXiv:1207.0787

  17. Gamayun, O., Iorgov, N., Lisovyy, O.: How instanton combinatorics solves Painlevé VI, V and III’s. J. Phys. A Math. Theor. 46, 335203 (2013). arXiv:1302.1832

  18. Hadasz, L., Jasklski, Z.: Super-Liouville—double Liouville correspondence. JHEP 1405, 124 (2014). arXiv:1312.4520

  19. Hadasz, L., Jaskólski, Z., Suchanek, P.: Recursion representation of the Neveu–Schwarz superconformal block. JHEP 0703, 032 (2007). arXiv:hep-th/0611266

  20. Iorgov N., Lisovyy O., Shchechkin A., Tykhyy Yu.: Painlevé functions and conformal blocks. Constr. Approx. 39, 255–272 (2014)

    Article  MathSciNet  Google Scholar 

  21. Iorgov N., Lisovyy O., Teschner J.: Isomonodromic τ functions from Liouville conformal blocks. Commun. Math. Phys. 336(2), 671–694 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. Iorgov, N., Lisovyy, O., Tykhyy, Y.: Painlevé VI connection problem and monodromy of c =  1 conformal blocks. JHEP 1312, 029 (2013). arXiv:1308.4092

  23. Its, A., Lisovyy, O., Tykhyy, Y.: Connection problem for the sine-Gordon/Painlevé III tau function and irregular conformal blocks. Int. Math. Res. Not. arXiv:1403.1235

  24. Lashkevich M.: Superconformal 2-D minimal models and an unusual coset construction. Mod. Phys. Lett. A 8, 851–860 (1993) arXiv:hep-th/93010932

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Litvinov, A., Lukyanov, S., Nekrasov, N., Zamolodchikov, A.: Classical conformal blocks and Painlevé VI. JHEP 1407, 144 (2014). arXiv:1309.4700

  26. Nakajima H., Yoshioka K.: Instanton counting on blowup. I. 4-dimensional pure gauge theory. Invent. Math. 162, 313–355 (2005) arXiv:math/0306198

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Ohyama Y., Kawamuko H., Sakai H., Okamoto K.: Studies on the Painlevé equations, V, third Painlevé equations of special type P III(D 7) and P III(D 8). J. Math. Sci. Univ. Tokyo 13, 145–204 (2006)

    MathSciNet  MATH  Google Scholar 

  28. Teschner, J.: On the Liouville three-point function. Phys. Lett. B 363, 63 (1995). arXiv:hep-th/9507109

  29. Teschner, J.: A lecture on the Liouville vertex operators. Int. J. Mod. Phys. A 19S2, 436–458 (2004). arXiv:hep-th/0303150

  30. Zamolodchikov Al.: Conformal symmetry in two dimensions: an explicit recurrence formula for the conformal partial wave amplitude. Commun. Math. Phys. 96, 419–422 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  31. Zamolodchikov, A.B., Zamolodchikov, A.B.: Conformal Field Theory and Critical Phenomena in Two-Dimensional Systems. Soviet Scientific Reviews Section A, vol. 10, Pt. 4, pp. 269–433. Harwood, London (1989)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Bershtein.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bershtein, M.A., Shchechkin, A.I. Bilinear Equations on Painlevé τ Functions from CFT. Commun. Math. Phys. 339, 1021–1061 (2015). https://doi.org/10.1007/s00220-015-2427-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2427-4

Keywords

Navigation