Skip to main content
Log in

Orbifold Construction of Holomorphic Vertex Operator Algebras Associated to Inner Automorphisms

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this article, we construct three new holomorphic vertex operator algebras of central charge 24 using the \({\mathbb{Z}_{2}}\)-orbifold construction associated to inner automorphisms. Their weight one subspaces have the Lie algebra structures D 7,3 A 3,1 G 2,1, E 7,3 A 5,1, and \({A_{8,3}A_{2,1}^2}\). In addition, we discuss the constructions of holomorphic vertex operator algebras with Lie algebras A 5,6 C 2,3 A 1,2 and \({D_{6,5}A_{1,1}^2}\) from holomorphic vertex operator algebras with Lie algebras C 5,3 G 2,2 A 1,1 and \({A_{4,5}^2}\), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apostol, T.M.: Modular functions and Dirichlet series in number theory, Second edition, Graduate Texts in Mathematics, 41. Springer, New York, pp. x+204 (1990)

  2. Borcherds R.E.: Vertex algebras, Kac-Moody algebras, and the Monster. Proc. Nat’l. Acad. Sci. USA 83, 3068–3071 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  3. Conway J.H., Sloane N.J.A.: Sphere Packings, Lattices and Groups, 3rd Edition. Springer, New York (1999)

    Book  MATH  Google Scholar 

  4. Dong C., Lepowsky J.: The algebraic structure of relative twisted vertex operators. J. Pure Appl. Algebra 110, 259–295 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dong C., Li H., Mason G.: Simple currents and extensions of vertex operator algebras. Commun. Math. Phys. 180, 671–707 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Dong C., Li H., Mason G.: Modular-invariance of trace functions in orbifold theory and generalized Moonshine. Commun. Math. Phys. 214, 1–56 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Dong C., Mason G.: On quantum Galois theory. Duke Math. J. 86, 305–321 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dong C., Mason G.: Holomorphic vertex operator algebras of small central charge. Pac. J. Math. 213, 253–266 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dong, C., Mason, G.: Rational vertex operator algebras and the effective central charge. Int. Math. Res. Not. 2989–3008 (2004)

  10. Dong, C., Mason, G.: Integrability of C 2-cofinite vertex operator algebras. Int. Math. Res. Not. Art. ID 80468, pp. 15 (2006)

  11. Dong C., Mason G.: Shifted vertex operator algebras. Math. Proc. Camb. Philos. Soc. 141, 67–80 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. van Ekeren J., Möller S., Scheithauer N.: Private communication

  13. Frenkel I.B., Huang Y., Lepowsky J.: On axiomatic approaches to vertex operator algebras and modules. Mem. Am. Math. Soc. 104, viii+64 (1993)

    MathSciNet  Google Scholar 

  14. Frenkel I., Lepowsky J., Meurman A.: Vertex Operator Algebras and the Monster, Pure and Appl. Math., Vol.134. Academic Press, Boston (1988)

    Google Scholar 

  15. Frenkel I., Zhu Y.: Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J. 66, 123–168 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Harada, K.: “Moonshine” of finite groups, EMS Series of Lectures in Mathematics. European Mathematical Society (EMS), Zurich (2010)

  17. Huang Y.: Vertex operator algebras and the Verlinde conjecture. Commun. Contemp. Math. 10, 103–154 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kac V.G.: Infinite-Dimensional Lie Algebras, Third edition. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  19. Krauel M., Mason G.: Vertex operator algebras and weak Jacobi forms. Int. J. Math. 23, 1250024, 10 (2012)

    Article  MathSciNet  Google Scholar 

  20. Lam C.H.: On the constructions of holomorphic vertex operator algebras of central charge 24. Commun. Math. Phys. 305, 153–198 (2011)

    Article  ADS  MATH  Google Scholar 

  21. Lam C.H., Shimakura H.: Quadratic spaces and holomorphic framed vertex operator algebras of central charge 24. Proc. Lond. Math. Soc. 104, 540–576 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lam C.H., Shimakura H.: Classification of holomorphic framed vertex operator algebras of central charge 24. Am. J. Math. 137, 111–137 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lepowsky J.: Calculus of twisted vertex operators. Proc. Natl. Acad. Sci. USA 82, 8295–8299 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Li H.: Symmetric invariant bilinear forms on vertex operator algebras. J. Pure Appl. Algebra 96, 279–297 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, H.: Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules. In: Moonshine, the Monster, and related topics, pp. 203–236, Contemp. Math., vol. 193, Am. Math. Soc., Providence, RI (1996)

  26. Li H.: Extension of vertex operator algebras by a self-dual simple module. J. Algebra 187, 236–267 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mason, G.: Lattice subalgebras of strongly regular vertex operator algebras. In: Conformal Field Theory, Automorphic Forms and Related Topics, pp. 31–53, Contrib. Math. Comput. Sci. vol. 8, Springer, Heidelberg (2014)

  28. Miyamoto, M.: A \({{\mathbb{Z}}_{3}}\)-orbifold theory of lattice vertex operator algebra and \({{\mathbb{Z}}_{3}}\)-orbifold constructions. In: Symmetries, integrable systems and representations, pp. 319–344. Springer Proc. Math. Stat. vol. 40, Springer, Heidelberg (2013)

  29. Miyamoto M.: C 2-cofiniteness of cyclic-orbifold models. Commun. Math. Phys. 335, 1279–1286 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Miyamoto, M.: Flatness and Semi-Rigidity of Vertex Operator Algebras. arXiv:1104.4675

  31. Montague P.S.: Orbifold constructions and the classification of self-dual c = 24 conformal field theories. Nuclear Phys. B 428, 233–258 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  32. Sagaki, D., Shimakura, H.: Application of a \({\mathbb{Z}_{3}}\)-orbifold construction to the lattice vertex operator algebras associated to Niemeier lattices. Trans. Am. Math. Soc. (to appear)

  33. Schellekens A.N.: Meromorphic c = 24 conformal field theories. Commun. Math. Phys. 153, 159–185 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Zhu Y.: Modular invariance of characters of vertex operator algebras. J. Am. Math. Soc. 9, 237–302 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching Hung Lam.

Additional information

Communicated by Y. Kawahigashi

C. H. Lam was partially supported by NSC Grant 100-2628-M-001005-MY4 of Taiwan. H. Shimakura was partially supported by JSPS KAKENHI Grant Numbers 23540013 and 26800001, and by Grant for Basic Science Research Projects from The Sumitomo Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lam, C.H., Shimakura, H. Orbifold Construction of Holomorphic Vertex Operator Algebras Associated to Inner Automorphisms. Commun. Math. Phys. 342, 803–841 (2016). https://doi.org/10.1007/s00220-015-2484-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2484-8

Keywords

Navigation