Skip to main content
Log in

Monoidal Supercategories

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This work is a companion to our article “Super Kac–Moody 2-categories,” which introduces super analogs of the Kac–Moody 2-categories of Khovanov–Lauda and Rouquier. In the case of \({\mathfrak{sl}_2}\), the super Kac–Moody 2-category was constructed already in [A. Ellis and A. Lauda, “An odd categorification of \({U_q(\mathfrak{sl}_2)}\)”], but we found that the formalism adopted there became too cumbersome in the general case. Instead, it is better to work with 2-supercategories (roughly, 2-categories enriched in vector superspaces). Then the Ellis–Lauda 2-category, which we call here a \({\Pi}\)-2-category (roughly, a 2-category equipped with a distinguished involution in its Drinfeld center), can be recovered by taking the superadditive envelope then passing to the underlying 2-category. The main goal of this article is to develop this language and the related formal constructions in the hope that these foundations may prove useful in other contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakalov, B., Kirillov, A., Jr.: Lectures on Tensor Categories and Modular Functors. American Mathematical Society (2001)

  2. Brundan J.: On the definition of Kac–Moody 2-category. Math. Ann. 364, 353–372 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brundan, J., Comes, J., Nash, D., Reynolds, A.: A basis theorem for the oriented Brauer category and its cyclotomic quotients. Quantum Top. (To appear)

  4. Brundan, J., Ellis, A.: Super Kac–Moody 2-categories. arXiv:1701.04133

  5. Brundan, J., Losev, I., Webster, B.: Tensor product categorifications and the super Kazhdan–Lusztig conjecture. Int. Math. Res. Notices (2016), article ID rnv388, 81 p

  6. Cautis S., Kamnitzer J., Morrison S.: Webs and quantum skew Howe duality. Math. Ann. 360, 351–390 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  7. Clark S.: Quantum supergroups IV: the modified form. Math. Z. 278, 493–528 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  8. Clark S., Wang W.: Canonical basis for quantum \({{\mathfrak{osp}}(1|2)}\). Lett. Math. Phys. 103, 207–231 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Elias B., Williamson G.: Soergel calculus. Represent. Theory 20, 295–374 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  10. Elias, B., Williamson, G.: Diagrammatics for Coxeter groups and their braid groups. Quantum Top. (To appear)

  11. Ellis A., Lauda A.: An odd categorification of \({U_q(\mathfrak{sl}_2)}\). Adv. Math. 265, 169–240 (2014)

    Article  MathSciNet  Google Scholar 

  12. Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor Categories. American Mathematical Society (2015)

  13. Jung J.H., Kang S.-J.: Mixed Schur–Weyl–Sergeev duality for queer Lie superalgebras. J. Algebra 399, 516–545 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kang S.-J., Kashiwara M., Oh S.-J.: Supercategorification of quantum Kac–Moody algebras II. Adv. Math. 265, 169–240 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kelly, G.M.: Basic concepts of enriched category theory. Reprint of the 1982 original. Repr. Theory Appl. Categ. (10), 1–136 (2005)

  16. Khovanov M., Lauda A.: A categorification of quantum \({\mathfrak{sl}(n)}\). Quantum Top. 1, 1–92 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kujawa, J., Tharp, B.: The marked Brauer category. J. Lond. Math. Soc. (To appear)

  18. Kuperberg G.: Spiders for rank 2 Lie algebras. Commun. Math. Phys. 180, 109–151 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Leinster, T.: Basic bicategories. arXiv:math/9810017

  20. Lehrer G., Zhang R.-B.: The Brauer category and invariant theory. J. Eur. Math. Soc 17, 2311–2351 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mac Lane S.: Categories for the Working Mathematician. Springer, Berlin (1978)

    Book  MATH  Google Scholar 

  22. Manin Y.I.: Gauge Field Theory and Complex Geometry. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  23. Meir E., Szymik M.: Drinfeld center for bicategories. Doc. Math. 20, 707–735 (2015)

    MATH  MathSciNet  Google Scholar 

  24. Rouquier, R.: 2-Kac-Moody algebras. arXiv:0812.5023

  25. Soergel W.: Kazhdan-Lusztig-Polynome und unzerlegbare bimoduln über polynomringen. J. Inst. Math. Jussieu 6, 501–525 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Usher, R.: Fermionic 6j-symbols in superfusion categories. arXiv:1606.03466

  27. Westbury B.: The representation theory of the Temperley–Lieb algebras. Math. Z. 219, 539–565 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Brundan.

Additional information

Communicated by Y. Kawahigashi

Research of J.B. supported in part by NSF Grant DMS-1161094.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brundan, J., Ellis, A.P. Monoidal Supercategories. Commun. Math. Phys. 351, 1045–1089 (2017). https://doi.org/10.1007/s00220-017-2850-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2850-9

Navigation