Skip to main content
Log in

Operator Algebras in Rigid C*-Tensor Categories

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this article, we define operator algebras internal to a rigid C*-tensor category \({\mathcal{C}}\). A C*/W*-algebra object in \({\mathcal{C}}\) is an algebra object A in ind-\({\mathcal{C}}\) whose category of free modules \({\mathsf{FreeMod}_\mathcal{C}(\mathbf{A})}\) is a \({\mathcal{C}}\)-module C*/W*-category respectively. When \({\mathcal{C}= \mathsf{Hilb}_\mathsf{fd}}\), the category of finite dimensional Hilbert spaces, we recover the usual notions of operator algebras. We generalize basic representation theoretic results, such as the Gelfand-Naimark and von Neumann bicommutant theorems, along with the GNS construction. We define the notion of completely positive morphisms between C*-algebra objects in \({\mathcal{C}}\) and prove the analog of the Stinespring dilation theorem. As an application, we discuss approximation and rigidity properties, including amenability, the Haagerup property, and property (T) for a connected W*-algebra M in \({\mathcal{C}}\). Our definitions simultaneously unify the definitions of analytic properties for discrete quantum groups and rigid C*-tensor categories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bédos, E., Conti, R., Tuset, L.: On amenability and co-amenability of algebraic quantum groups and their corepresentations. Canad. J. Math. 57(1), 17–60 (2005). doi:10.4153/CJM-2005-002-8

  2. Bartels A., Douglas C.L., Henriques A.: Dualizability and index of subfactors. Quantum Topol. 5(3), 289–345 (2014). doi:10.4171/QT/53. arXiv:1110.5671

    MathSciNet  MATH  Google Scholar 

  3. Bekka, B., de la Harpe, P., Valette, A.: Kazhdan’s Property (T). New Mathematical Monographs vol. 11. Cambridge University Press, Cambridge. doi:10.1017/CBO9780511542749 (2008)

  4. Brundan J., Ellis Alexander P.: Monoidal supercategories. Commun. Math. Phys. 35(3), 1045–1089 (2017). doi:10.1007/s00220-017-2850-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bruillard P., Galindo C., Hagge T., Ng S.-H., Plavnik J.Y., Rowell Eric C., Wang Z.: Fermionic modular categories and the 16-fold way. J. Math. 58, 041704 (2017). doi:10.1063/1.4982048

    ADS  MathSciNet  MATH  Google Scholar 

  6. Brothier A., Hartglass M., Penneys D.: Rigid \({C*}\)-tensor categories of bimodules over interpolated free group factors. J. Math. Phys. 53(12), 123525, 43 (2012). doi:10.1063/1.4769178 arXiv:1208.5505

    Article  MathSciNet  MATH  Google Scholar 

  7. Bisch, D.: Bimodules, higher relative commutants and the fusion algebra associated to a subfactor, Operator algebras and their applications (Waterloo, ON, 1994/1995), 13–63, Fields Inst. Commun., 13, Am. Math. Soc., Providence, RI (preview at google books) (1997)

  8. Bruguières, A., Natale, S.: Exact sequences of tensor categories. Int. Math. Res. Not. IMRN 24:5644–5705 (2011). doi:10.1093/imrn/rnq294. arXiv:1006.0569

  9. Brannan, M.: Approximation properties for locally compact quantum groups (2016). arXiv:1605.01770

  10. Baaj S., Skandalis G.: Unitaires multiplicatifs et dualité pour les produits croisés de C *-algèbres. Ann. Sci. École Norm. Sup. (4) 26(4), 425–488 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bòhm G., Szlachónyi K.: A coassociative C *-quantum group with nonintegral dimensions. Lett. Math. Phys. 38(4), 437–456 (1996). doi:10.1007/BF01815526

    Article  MathSciNet  MATH  Google Scholar 

  12. Connes A.: On the Spatial Theory of von Neumann Algebras. J. Funct. Anal. 35(2), 153–164 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Daws, M.: Completely positive multipliers of quantumgroups. Int. J.Math. 23(12), 1250132, 23 (2012). doi:10.1142/S0129167X12501327

  14. Day, B.: On closed categories of functors, Reports of the Midwest Category Seminar, IV, Lecture Notes in Mathematics, vol. 137. Springer, Berlin, pp. 1–38 (1970)

  15. De Commer K., Timmermann T.: Partial compact quantum groups. J. Algebra 438, 283–324 (2015). doi:10.1016/j.jalgebra.2015.04.039

    Article  MathSciNet  MATH  Google Scholar 

  16. De Commer K., Yamashita M.: Tannaka–Kreĭ n duality for compact quantum homogeneous spaces II. Classification of quantum homogeneous spaces for quantum SU(2), J. Reine Angew. Math. 708, 143–171 (2015). doi:10.1515/crelle-2013-0074

    MathSciNet  MATH  Google Scholar 

  17. Daws M., Fima P., Skalski A., White S.: The Haagerup property for locally compact quantum groups. J. Reine Angew. Math. 711, 189–229 (2016). doi:10.1515/crelle-2013-0113

    MathSciNet  MATH  Google Scholar 

  18. Drinfeld V., Gelaki S., Nikshych D., Ostrik V.: On braided fusion categories. I, Selecta Math. (N.S.) 16(1), 1–119 (2010). doi:10.1007/s00029-010-0017-z arXiv:0906.0620

    Article  MathSciNet  MATH  Google Scholar 

  19. Dijkhuizen M.S., Koornwinder T.H.: CQG algebras: a direct algebraic approach to compact quantum groups. Lett. Math. Phys. 32(4), 315–330 (1994). doi:10.1007/BF00761142 arXiv:9406042

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Douglas, C., Schommer-Pries, C., Snyder, N.: Dualizable tensor categories (2013). arXiv:1312.7188

  21. Daws M., Skalski A., Viselter A.: Around property (T) for quantum groups. Commun. Math. Phys. 353(1), 69–118 (2017). doi:10.1007/s00220-017-2862-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Evans, D.E., Kawahigashi, Y.: Quantum Symmetries on Operator Algebras, Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, xvi+829 pp. ISBN: 0-19-851175-2 (1998)

  23. Fima P.: Kazhdan’s property T for discrete quantum groups. Int. J. Math. 21(1), 47–65 (2010). doi:10.1142/S0129167X1000591X

    Article  MathSciNet  MATH  Google Scholar 

  24. Frank M., Kirchberg E.: On conditional expectations of finite index. J. Oper. Theory 40(1), 87–111 (1998)

    MathSciNet  MATH  Google Scholar 

  25. Ghosh S.K., Jones C.: Annular representation theory for rigid C *-tensor categories. J. Funct. Anal. 270(4), 1537–1584 (2016). doi:10.1016/j.jfa.2015.08.017 arXiv:1502.06543

    Article  MathSciNet  MATH  Google Scholar 

  26. Ghez P., Lima R., Roberts J.E.: W*-categories. Pacific J. Math. 120(1), 79–109 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gelfand I., Neumark M.: On the imbedding of normed rings into the ring of operators in Hilbert space. Rec. Math. [Mat. Sbornik] N.S. 12(54), 197–213 (1943)

    MathSciNet  MATH  Google Scholar 

  28. Henriques, A., Penneys, D.: Bicommutant categories from fusion categories. Sel. Math. New Ser. (2016). doi:10.1007/s00029-016-0251-0. arXiv:1511.05226

  29. Henriques, A., Penneys, D., Tener, J.: Unitary anchored planar algebras in (in preparation)

  30. Henriques A., Penneys D., Tener J.: Categorified trace for module tensor categories over braided tensor categories. Doc. Math. 21, 1089–1149 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Henriques, A., Penneys, D., Tener, J.E.: Planar algebras in braided tensor categories (2016) arXiv:1607.06041

  32. Izumi M., Longo R., Popa S.: A Galois correspondence for compact groups of automorphisms of von Neumann algebras with a generalization to Kac algebras. J. Funct. Anal. 155(1), 25–63 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jaffe A., Liu Z.: Planar para algebras, reflection positivity. Commun. Math. Phys. 352(1), 95–133 (2017). doi:10.1007/s00220-016-2779-4 arXiv:1602.02662

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Jones Vaughan F.R.: Index for subfactors. Invent. Math. 72(1), 1–25 (1983). doi:10.1007/BF01389127

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Jones V.F.R.: Planar algebras I (1999). arXiv:9909027

  36. Jones, C., Penneys, D.: Realizations of algebra objects and discrete subfactors (2017). arXiv:1704.02035

  37. Jones V.F.R., Sunder V.S.: Introduction to Subfactors. London Mathematical Society Lecture Note Series, 234. Cambridge University Press, Cambridge, xii+162 pp. ISBN: 0-521-58420-5 (1997)

  38. Kelly G.M.: Basic concepts of enriched category theory. Repr. Theory Appl. Categ. (2005), no. 10, vi+137, Reprint of the 1982 original [Cambridge Univ. Press, Cambridge] (2005)

  39. Kirillov A. Jr, Ostrik V.: On a q-analogue of the McKay correspondence and the ADE classification of \({\mathfrak{sl}_2}\) conformal field theories. Adv. Math. 171(2), 183–227 (2002). doi:10.1006/aima.2002.2072 arXiv:0101219

    Article  MathSciNet  MATH  Google Scholar 

  40. Longo R., Roberts J.E.: A theory of dimension. K-Theory 11(2), 103–159 (1997). doi:10.1023/A:1007714415067

    Article  MathSciNet  MATH  Google Scholar 

  41. Masuda T.: Generalization of Longo-Rehren construction to subfactors of infinite depth and amenability of fusion algebras. J. Funct. Anal. 171(1), 53–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  42. Morrison, S., Penneys, D.: Monoidal categories enriched in braided monoidal categories (2017). arXiv:1701.00567

  43. Morrison S., Peters E., Snyder N.: Skein theory for the D 2n planar algebras. J. Pure Appl. Algebra 214(2), 117–139 (2010). doi:10.1016/j.jpaa.2009.04.010 arXiv:0808.0764

    Article  MathSciNet  MATH  Google Scholar 

  44. Müger M.: From subfactors to categories and topology. II. The quantum double of tensor categories and subfactors. J. Pure Appl. Algebra 180(1–2), 159–219 (2003). doi:10.1016/S0022-4049(02)00248-7 arXiv:math.CT/0111205

    Article  MathSciNet  MATH  Google Scholar 

  45. Murray F.J., von Neumann J.: On rings of operators. IV, Ann. Math. (2) 44, 716–808 (1943)

    Article  MATH  Google Scholar 

  46. Neshveyev, S, Tuset, L.: Compact quantum groups and their representation categories, Cours Spécialisés [Specialized Courses], vol. 20, Société Mathématique de France, Paris (2013)

  47. Nikshych, D., Vainerman, L.: Algebraic versions of a finite-dimensional quantum groupoid, Hopf algebras and quantum groups (Brussels, 1998), Lecture Notes in Pure and Applied Mathematics, vol. 209, Dekker, New York, pp. 189–220 (2000)

  48. Neshveyev, S., Yamashita, M.: A few remarks on the tube algebra of a monoidal category, to appear Proc. Edinb. Math. Soc. (2015). arXiv:1511.06332

  49. Neshveyev S., Yamashita M.: Drinfeld center and representation theory for monoidal categories. Commun. Math. Phys. 345(1), 385–434 (2016). doi:10.1007/s00220-016-2642-7 arXiv:1501.07390

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Ocneanu, A.: Quantized groups, string algebras and Galois theory for algebras. In: Operator algebras and applications, vol. 2, London Mathematical Society Lecture Note Series, vol. 136, Cambridge Univ. Press, Cambridge, pp. 119–172 (1988)

  51. Ostrik V.: Module categories, weak Hopf algebras and modular invariants. Transform. Groups 8(2), 177–206 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  52. Penneys D.: A planar calculus for infinite index subfactors. Commun. Math. Phys. 319(3), 595–648 (2013). doi:10.1007/s00220-012-1627-4 arXiv:1110.3504

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Popa S.: Symmetric enveloping algebras, amenability and AFD properties for subfactors. Math. Res. Lett. 1(4), 409–425 (1994). doi:10.4310/MRL.1994.v1.n4.a2

    Article  MathSciNet  MATH  Google Scholar 

  54. Popa S.: An axiomatization of the lattice of higher relative commutants of a subfactor. Invent. Math. 120(3), 427–445 (1995). doi:10.1007/BF01241137

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Popa, S.: Some properties of the symmetric enveloping algebra of a subfactor, with applications to amenability and property T. Doc. Math. 4:665–744 (electronic) (1999)

  56. Pimsner M., Popa S.: Entropy and index for subfactors. Ann. Sci. École Norm. Sup. (4) 19(1), 57–106 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  57. Popa, S., Shlyakhtenko, D., Vaes, S.: Cohomology and l 2-Betti numbers for subfactors and quasi-regular inclusions, to appear Int. Math. Res. Not. (2015). arXiv:1511.07329

  58. Popa S., Vaes S.: Representation theory for subfactors, \({\lambda}\)-lattices and C *-tensor categories. Commun. Math. Phys. 340(3), 1239–1280 (2015). doi:10.1007/s00220-015-2442-5 arXiv:1412.2732

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Ruan Z.-J.: Amenability of Hopf von Neumann algebras and Kac algebras. J. Funct. Anal. 139(2), 466–499 (1996). doi:10.1006/jfan.1996.0093

    Article  MathSciNet  MATH  Google Scholar 

  60. Usher, R.: Fermionic 6j-symbols in superfusion categories (2016). arXiv:1606.03466

  61. Yamagami S.: Frobenius duality in C *-tensor categories. J. Oper. Theory 52(1), 3–20 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Penneys.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, C., Penneys, D. Operator Algebras in Rigid C*-Tensor Categories. Commun. Math. Phys. 355, 1121–1188 (2017). https://doi.org/10.1007/s00220-017-2964-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2964-0

Navigation