Skip to main content
Log in

Global Instability in the Restricted Planar Elliptic Three Body Problem

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The restricted planar elliptic three body problem (RPETBP) describes the motion of a massless particle (a comet or an asteroid) under the gravitational field of two massive bodies (the primaries, say the Sun and Jupiter) revolving around their center of mass on elliptic orbits with some positive eccentricity. The aim of this paper is to show the existence of orbits whose angular momentum performs arbitrary excursions in a large region. In particular, there exist diffusive orbits, that is, with a large variation of angular momentum. The leading idea of the proof consists in analyzing parabolic motions of the comet. By a well-known result of McGehee, the union of future (resp. past) parabolic orbits is an analytic manifold \({\mathcal{P}^+}\) (resp. \({\mathcal{P}^-}\)). In a properly chosen coordinate system these manifolds are stable (resp. unstable) manifolds of a manifold at infinity \({\mathcal{P}_\infty}\), which we call the manifold at parabolic infinity. On \({\mathcal{P}_\infty}\) it is possible to define two scattering maps, which contain the map structure of the homoclinic trajectories to it, i.e. orbits parabolic both in the future and the past. Since the inner dynamics inside \({\mathcal{P}_\infty}\) is trivial, two different scattering maps are used. The combination of these two scattering maps permits the design of the desired diffusive pseudo-orbits. Using shadowing techniques and these pseudo orbits we show the existence of true trajectories of the RPETBP whose angular momentum varies in any predetermined fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold V.I.: Instability of dynamical systems with several degrees of freedom. Sov. Math. 5(5), 581–585 (1964)

    Google Scholar 

  2. Braddell, R., Delshams, A., Miranda, E., Oms, C., Planas, A.: An invitation to singular symplectic geometry. Int. J. Geom. Methods Mod. Phys. (2018) (To appear)

  3. Bolotin S.: Symbolic dynamics of almost collision orbits and skew products of symplectic maps. Nonlinearity 19(9), 2041–2063 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Capiński M.J., Zgliczyński P.: Transition tori in the planar restricted elliptic three-body problem. Nonlinearity 24(5), 1395–1432 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Delshams A., Gutiérrez P.: Splitting potential and the Poincaré-Melnikov method for whiskered tori in Hamiltonian systems. J. Nonlinear Sci. 10(4), 433–476 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Delshams A., Gidea M., Roldán P.: Transition map and shadowing lemma for normally hyperbolic invariant manifolds. Discrete Contin. Dyn. Syst. 33(3), 1089–1112 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Delshams A., Gidea M., Roldán P.: Arnold’s mechanism of diffusion in the spatial circular restricted three-body problem: a semi-analytical argument. Physica D 334, 29–48 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  8. Delshams A., Kiesenhofer A., Miranda E.: Examples of integrable and non-integrable systems on singular symplectic manifolds. J. Geom. Phys. 115, 89–97 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Delshams A., de la Llave R., Seara T.M.: . Commun. Math. Phys. 209(2), 353–392 (2000)

    Article  ADS  MATH  Google Scholar 

  10. Delshams A., de la Llave R., Seara T.M.: A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heuristics and rigorous verification on a model. Mem. Am. Math. Soc. 179(844), viii+141 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Delshams A., de la Llave R., Seara T.M.: Geometric properties of the scattering map of a normally hyperbolic invariant manifold. Adv. Math. 217(3), 1096–1153 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Delshams A., Schaefer R.G.: Arnold diffusion for a complete family of perturbations. Regul. Chaotic Dyn. 22(1), 78–108 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Delshams, A., Schaefer, R.G.: Arnold diffusion for a complete family of perturbations with two independent harmonics. Discrete Contin. Dyn. Syst. 38(12), (2018)

  14. Erdélyi A.: Asymptotic Expansions. Dover Publications, Inc., New York (1956)

    MATH  Google Scholar 

  15. Féjoz J., Guà àrdia M., Kaloshin V., Roldán P.: Kirkwood gaps and diffusion along mean motion resonances in the restricted planar three-body problem. J. Eur. Math. Soc. (JEMS) 18(10), 2315–2403 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Galante J., Kaloshin V.: Destruction of invariant curves in the restricted circular planar three-body problem by using comparison of action. Duke Math. J. 159(2), 275–327 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gorodetski, A., Kaloshin, V.: On Hausdorff dimension of oscillatory motions in three body problems (2013). Preprint

  18. Gidea M., de la Llave R.: Topological methods in the instability problem of Hamiltonian systems. Discrete Contin. Dyn. Syst. 14(2), 295–328 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Gidea, M., de la Llave, R., M-Seara, T.: A general mechanism of diffusion in Hamiltonian systems: qualitative results (2014). Preprint, arXiv:1405.0866

  20. Guardia M., Martín P., M-Seara T.: Oscillatory motions for the restricted planar circular three body problem. Invent. Math. 203(2), 417–492 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Guardia M., Martín P., M-Seara T., Sabbagh L.: Oscillatory orbits in the restricted elliptic planar three body problem. Discrete Contin. Dyn. Syst. 37(1), 229–256 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kiesenhofer A., Miranda E., Scott G.: Action-angle variables and a KAM theorem for b-Poisson manifolds. J. Math. Pures Appl. (9) 105(1), 66–85 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Llibre J., Martínez R., Simó C.: Tranversality of the invariant manifolds associated to the Lyapunov family of periodic orbits near L 2 in the restricted three-body problem. J. Differ. Equ. 58(1), 104–156 (1985)

    Article  ADS  MATH  Google Scholar 

  24. Llibre J., Simó C.: Oscillatory solutions in the planar restricted three-body problem. Math. Ann. 248(2), 153–184 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. McGehee R.: A stable manifold theorem for degenerate fixed points with applications to celestial mechanics. J. Differ. Equ. 14, 70–88 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Moeckel, R.: Generic drift on Cantor sets of annuli. In: Celestial Mechanics (Evanston, IL, 1999), volume 292 of Contemp. Math., pp. 163–171. Amer. Math. Soc., Providence, RI (2002)

  27. Moeckel R.: Symbolic dynamics in the planar three-body problem. Regul. Chaotic Dyn. 12(5), 449–475 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Moser J.: Stable and Random Motions in Dynamical Systems. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ (2001)

    Book  Google Scholar 

  29. Martínez R., Pinyol C.: Parabolic orbits in the elliptic restricted three body problem. J. Differ. Equ. 111(2), 299–339 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Martínez R., Simó C.: Invariant manifolds at infinity of the RTBP and the boundaries of bounded motion. Regul. Chaotic Dyn. 19(6), 745–765 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Scott G.: The geometry of b k manifolds. J. Symplectic Geom. 14(1), 71–95 (2016)

    Article  MathSciNet  Google Scholar 

  32. Wintner A.: The Analytical Foundations of Celestial Mechanics. Princeton Mathematical Series, v. 5.. Princeton University Press, Princeton, NJ (1941)

    Google Scholar 

  33. Xia Z.: Melnikov method and transversal homoclinic points in the restricted three-body problem. J. Differ. Equ. 96(1), 170–184 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Xia Z.: Arnol′d diffusion in the elliptic restricted three-body problem. J. Dyn. Differ. Equ. 5(2), 219–240 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Marcel Guàrdia, Pau Martín, Regina Martínez, Eva Miranda and Carles Simó for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amadeu Delshams.

Additional information

Communicated by C. Liverani

AD and TMS were partially supported by the Spanish MINECO-FEDER Grant MTM2015-65715-P, the Catalan Grant 2017SGR1049 and the Russian Scientific Foundation Grant 14-41-00044. VK was partially supported by the DMS-NSF grant 1702278 and the Simons Fellowship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delshams, A., Kaloshin, V., de la Rosa, A. et al. Global Instability in the Restricted Planar Elliptic Three Body Problem. Commun. Math. Phys. 366, 1173–1228 (2019). https://doi.org/10.1007/s00220-018-3248-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3248-z

Navigation