Skip to main content
Log in

Cheshire Cat Resurgence, Self-Resurgence and Quasi-Exact Solvable Systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We explore a one parameter \({\zeta}\)-deformation of the quantum-mechanical Sine-Gordon and Double-Well potentials which we call the Double Sine-Gordon (DSG) and the Tilted Double Well (TDW), respectively. In these systems, for positive integer values of \({\zeta}\), the lowest \({\zeta}\) states turn out to be exactly solvable for DSG—a feature known as Quasi-Exact-Solvability (QES)—and solvable to all orders in perturbation theory for TDW. For DSG such states do not show any instanton-like dependence on the coupling constant, although the action has real saddles. On the other hand, although it has no real saddles, the TDW admits all-orders perturbative states that are not normalizable, and hence, requires a non-perturbative energy shift. Both of these puzzles are solved by including complex saddles. We show that the convergence is dictated by the quantization of the hidden topological angle. Further, we argue that the QES systems can be linked to the exact cancellation of real and complex non-perturbative saddles to all orders in the semi-classical expansion. We also show that the entire resurgence structure remains encoded in the analytic properties of the \({\zeta}\)-deformation, even though exactly at integer values of \({\zeta}\) the mechanism of resurgence is obscured by the lack of ambiguity in both the Borel sum of the perturbation theory as well as the non-perturbative contributions. In this way, all of the characteristics of resurgence remains even when its role seems to vanish, much like the lingering grin of the Cheshire Cat. We also show that the perturbative series is Self-resurgent—a feature by which there is a one-to-one relation between the early terms of the perturbative expansion and the late terms of the same expansion—which is intimately connected with the Dunne–Ünsal relation. We explicitly verify that this is indeed the case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dyson F.J.: Divergence of perturbation theory in quantum electrodynamics. Phys. Rev. 85, 631–632 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  2. Ecalle, J.: Les Fonctions Resurgentes, Vols. I–III. Publications Mathématiques d’Orsay (1981)

  3. Voros A.: The return of the quartic oscillator. The complex wkb method. Ann. Inst. H. Poincare 39, 211–338 (1983)

    MathSciNet  MATH  Google Scholar 

  4. Candelpergher B., Nosmas J.-C., Pham F.: Approche de la résurgence. Hermann, Paris (1993)

    MATH  Google Scholar 

  5. Delabaere E., Pham F.: Resurgent methods in semi-classical asymptotics. Ann. IHP Phys. théor. 71, 1–94 (1999)

    MathSciNet  MATH  Google Scholar 

  6. Kawai, T., Takei, Y.: Algebraic Analysis of Singular Perturbation Theory, vol. 227. American Mathematical Society, Providence (2005)

  7. Bogomolny E.: Calculation of instanton-anti-instanton contributions in quantum mechanics. Phys. Lett. B 91, 431–435 (1980)

    Article  ADS  Google Scholar 

  8. Zinn-Justin J.: Multi-instanton contributions in quantum mechanics. Nucl. Phys. B 192, 125–140 (1981)

    Article  ADS  Google Scholar 

  9. Dunne G.V., Ünsal M.: Uniform WKB, Multi-instantons, and Resurgent Trans-Series. Phys. Rev. D 89, 105009 (2014) arXiv:1401.5202

    Article  ADS  Google Scholar 

  10. Dunne G.V., Ünsal M.: Generating non-perturbative physics from perturbation theory. Phys. Rev. D 89, 041701 (2014) arXiv:1306.4405

    Article  ADS  Google Scholar 

  11. Berry M.V., Berry M.V., Berry M.V.: Hyperasymptotics for integrals with saddles. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 434, 657–675 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  12. Delabaere, E., Howls, C.J.: Global asymptotics for multiple integrals with boundaries. Duke Math. J. 112, 199–264 (04, 2002)

    Article  MathSciNet  Google Scholar 

  13. Howls C.J.: Hyperasymptotics for multidimensional integrals, exact remainder terms and the global connection problem. Proc. R. Soc. Lond. 453, 2271 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  14. Cherman, A., Dorigoni, D., Ünsal, M.: Decoding perturbation theory using resurgence: Stokes phenomena, new saddle points and Lefschetz thimbles. arxiv:1403.1277

  15. Behtash, A., Dunne, G.V., Schaefer, T., Sulejmanpasic, T., Unsal, M.: Toward Picard–Lefschetz theory of path integrals, complex saddles and resurgence. arXiv:1510.03435

  16. Misumi, T., Nitta, M., Sakai, N.: Resurgence in sine-Gordon quantum mechanics: Exact agreement between multi-instantons and uniform WKB. arXiv:1507.00408

  17. Argyres P.C., Unsal M.: The semi-classical expansion and resurgence in gauge theories: new perturbative, instanton, bion, and renormalon effects. JHEP 08, 063 (2012) arXiv:1206.1890

    Article  ADS  MathSciNet  Google Scholar 

  18. Argyres P., Unsal M.: A semiclassical realization of infrared renormalons. Phys. Rev. Lett. 109, 121601 (2012) arXiv:1204.1661

    Article  ADS  Google Scholar 

  19. Dunne G.V., Ünsal M.: Continuity and Resurgence: towards a continuum definition of the CP(N-1) model. Phys. Rev. D 87, 025015 (2013) arXiv:1210.3646

    Article  ADS  Google Scholar 

  20. Dunne G.V., Ünsal M.: Resurgence and trans-series in quantum field theory: the CP(N-1) model. JHEP 1211, 170 (2012) arXiv:1210.2423

    Article  ADS  MathSciNet  Google Scholar 

  21. Cherman A., Dorigoni D., Dunne G.V., Ünsal M.: Resurgence in quantum field theory: nonperturbative effects in the principal chiral model. Phys. Rev. Lett. 112, 021601 (2014) arXiv:1308.0127

    Article  ADS  Google Scholar 

  22. Anber M.M., Sulejmanpasic T.: The renormalon diagram in gauge theories on \({ \mathbb{R}3\times \mathbb{S}1}\). JHEP 01, 139 (2015) arXiv:1410.0121

    Article  ADS  Google Scholar 

  23. Başar G., Dunne G.V.: Resurgence and the Nekrasov–Shatashvili limit: connecting weak and strong coupling in the Mathieu and Lamé systems. JHEP 02, 160 (2015) arXiv:1501.05671

    Article  ADS  Google Scholar 

  24. Escobar-Ruiz M.A., Shuryak E., Turbiner A.V.: Three-loop correction to the instanton density. II. The Sine-Gordon potential. Phys. Rev. D 92, 025047 (2015) arXiv:1505.05115

    Article  ADS  MathSciNet  Google Scholar 

  25. Escobar-Ruiz M.A., Shuryak E., Turbiner A.V.: Three-loop correction to the instanton density. I. The quartic double well potential. Phys. Rev. D 92, 025046 (2015) arXiv:1501.03993

    Article  ADS  MathSciNet  Google Scholar 

  26. Dunne, G.V., Ünsal, M.: Deconstructing zero: resurgence, supersymmetry and complex saddles. arXiv:1609.05770

  27. Poppitz E., Schäfer T., Ünsal M.: Continuity, deconfinement, and (super) Yang–Mills theory. JHEP 1210, 115 (2012) arXiv:1205.0290

    Article  ADS  MathSciNet  Google Scholar 

  28. Poppitz E., Schäfer T., Ünsal M.: Universal mechanism of (semi-classical) deconfinement and theta-dependence for all simple groups. JHEP 1303, 087 (2013) arXiv:1212.1238

    Article  ADS  Google Scholar 

  29. Honda M.: Borel summability of perturbative series in 4D N = 2 and 5D N = 1 supersymmetric theories. Phys. Rev. Lett. 116, 211601 (2016) arXiv:1603.06207

    Article  ADS  MathSciNet  Google Scholar 

  30. Behtash A., Sulejmanpasic T., Schäfer T., M.: Hidden topological angles in path integrals. Phys. Rev. Lett. 115, 041601 (2015) arXiv:1502.06624

    Article  ADS  MathSciNet  Google Scholar 

  31. Behtash A., Poppitz E., Sulejmanpasic T., Ünsal M.: The curious incident of multi-instantons and the necessity of Lefschetz thimbles. JHEP 11, 175 (2015) arXiv:1507.04063

    Article  ADS  MathSciNet  Google Scholar 

  32. Behtash A., Dunne G.V., Schäfer T., Sulejmanpasic T., Ünsal M.: Complexified path integrals, exact saddles and supersymmetry. Phys. Rev. Lett. 116, 011601 (2016) arXiv:1510.00978

    Article  ADS  MathSciNet  Google Scholar 

  33. Buividovich P.V., Dunne G.V., Valgushev S.N.: Complex path integrals and saddles in two-dimensional gauge theory. Phys. Rev. Lett. 116, 132001 (2016) arXiv:1512.09021

    Article  ADS  MathSciNet  Google Scholar 

  34. Marino M., Schiappa R., Weiss M.: Nonperturbative effects and the large-order behavior of matrix models and topological strings. Commun. Number Theor. Phys. 2, 349–419 (2008) arXiv:0711.1954

    Article  MathSciNet  Google Scholar 

  35. Mariño M.: Lectures on non-perturbative effects in large N gauge theories, matrix models and strings. Fortsch. Phys. 62, 455–540 (2014) arXiv:1206.6272

    Article  ADS  MathSciNet  Google Scholar 

  36. Aniceto I., Schiappa R., Vonk M.: The resurgence of instantons in string theory. Commun. Numb. Theor. Phys. 6, 339–496 (2012) arXiv:1106.5922

    Article  MathSciNet  Google Scholar 

  37. Schiappa R., Vaz R.: The resurgence of instantons: multi-cut stokes phases and the Painleve II equation. Commun. Math. Phys. 330, 655–721 (2014) arXiv:1302.5138

    Article  ADS  MathSciNet  Google Scholar 

  38. Couso-Santamaría R., Edelstein J.D., Schiappa R., Vonk M.: Resurgent transseries and the holomorphic anomaly. Ann. H. Poincare 17, 331–399 (2016) arXiv:1308.1695

    Article  MathSciNet  Google Scholar 

  39. Couso-Santamaría R., Edelstein J.D., Schiappa R., Vonk M.: Resurgent transseries and the holomorphic anomaly: nonperturbative closed strings in local \({{\mathbb{C} \mathbb{P}^2}}\). Commun. Math. Phys. 338, 285–346 (2015) arXiv:1407.4821

    Article  ADS  Google Scholar 

  40. Vonk M.: Resurgence and topological strings. Proc. Symp. Pure Math. 93, 221 (2015) arXiv:1502.05711

    MathSciNet  MATH  Google Scholar 

  41. Couso-Santamaría, R., Schiappa, R., Vaz, R.: On asymptotics and resurgent structures of enumerative Gromov–Witten invariants. arXiv:1605.07473

  42. Aniceto, I., Schiappa, R.: Nonperturbative ambiguities and the reality of resurgent transseries. arXiv:1308.1115

  43. Hatsuda Y., Marino M., Moriyama S., Okuyama K.: Non-perturbative effects and the refined topological string. JHEP 09, 168 (2014) arXiv:1306.1734

    Article  ADS  MathSciNet  Google Scholar 

  44. Basar G., Dunne G.V., Ünsal M.: Resurgence theory, ghost-instantons, and analytic continuation of path integrals. JHEP 10, 041 (2013) arXiv:1308.1108

    Article  ADS  MathSciNet  Google Scholar 

  45. Misumi T., Nitta M., Sakai N.: Neutral bions in the \({{\mathbb{C}}P^{N-1}}\) model. JHEP 1406, 164 (2014) arXiv:1404.7225

    Article  ADS  Google Scholar 

  46. Misumi T., Nitta M., Sakai N.: Classifying bions in Grassmann sigma models and non-Abelian gauge theories by D-branes. PTEP 2015, 033B02 (2015) arXiv:1409.3444

    MATH  Google Scholar 

  47. Dorigoni, D.: An introduction to resurgence, trans-series and alien calculus. arXiv:1411.3585

  48. Fujimori, T., Kamata, S., Misumi, T., Nitta, M., Sakai, N.: Non-perturbative contributions from complexified solutions in \({\mathbb{C}P^{N-1}}\) models. arXiv:1607.04205

  49. Gukov, S., Marino, M., Putrov, P.: Resurgence in complex Chern–Simons theory. arXiv:1605.07615

  50. Liam Fitzpatrick, A., Kaplan, J.: On the late-time behavior of virasoro blocks and a classification of semiclassical saddles. arXiv:1609.07153

  51. Fitzpatrick A.L., Kaplan J., Li D., Wang J.: On information loss in AdS 3/CFT 2. JHEP 05, 109 (2016) arXiv:1603.08925

    Article  ADS  Google Scholar 

  52. Demulder, S., Dorigoni, D., Thompson, D.C.: Resurgence in \({\eta}\)-deformed principal chiral models. arXiv:1604.07851

  53. Turbiner, A., Ushveridze, A.: Spectral singularities and quasi-exactly solvable quantal problem. Phys. Lett. A 126(3), 181–183 (1987). https://doi.org/10.1016/0375-9601(87)90456-7

    Article  ADS  MathSciNet  Google Scholar 

  54. Turbiner, A.: Quasi-exactly-solvable problems and sl(2) algebra. Commun. Math. Phys. 118, 467 (1988). https://doi.org/10.1007/BF01466727

    Article  ADS  MathSciNet  Google Scholar 

  55. Turbiner, A.V.: Lame equation, sl(2) algebra and isospectral deformations. J. Phys. A Math. Gen. 22, 1 (1989). https://doi.org/10.1088/0305-4470/22/1/001

    Article  ADS  MathSciNet  Google Scholar 

  56. Witten E.: Dynamical breaking of supersymmetry. Nucl. Phys. B188, 513 (1981). https://doi.org/10.1016/0550-3213(81)90006-7

    Article  ADS  MATH  Google Scholar 

  57. Berry, M.V.: Dingle’s self-resurgence formula. Nonlinearity 30, R25 (2017). https://doi.org/10.1088/1361-6544/aa6c78

    Article  ADS  MathSciNet  Google Scholar 

  58. Sulejmanpasic, T., Ünsal, M.: Aspects of perturbation theory in quantum mechanics: the BenderWu Mathematica package. arXiv:1608.08256

  59. Bender C.M., Wu T.T.: Anharmonic oscillator. Phys. Rev. 184, 1231–1260 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  60. Bender C.M., Wu T.: Anharmonic oscillator. 2: A study of perturbation theory in large order. Phys. Rev. D7, 1620–1636 (1973)

    ADS  Google Scholar 

  61. Witten E.: Constraints on supersymmetry breaking. Nucl. Phys. B202, 253 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  62. Cooper F., Khare A., Sukhatme U.: Supersymmetry and quantum mechanics. Phys. Rep. 251, 267–385 (1995) arXiv:hep-th/9405029

    Article  ADS  MathSciNet  Google Scholar 

  63. Turbiner A.V.: One-dimensional quasi-exactly solvable Schrödinger equations. Phys. Rep. 642, 1–71 (2016) arXiv:1603.02992

    Article  ADS  MathSciNet  Google Scholar 

  64. Klishevich S.M., Plyushchay M.S.: Nonlinear supersymmetry, quantum anomaly and quasiexactly solvable systems. Nucl. Phys. B606, 583–612 (2001) arXiv:hep-th/0012023

    Article  ADS  Google Scholar 

  65. Jentschura U.D., Zinn-Justin J.: Instantons in quantum mechanics and resurgent expansions. Phys. Lett. B596, 138–144 (2004) arXiv:hep-ph/0405279

    Article  ADS  MathSciNet  Google Scholar 

  66. Ünsal M.: Magnetic bion condensation: a New mechanism of confinement and mass gap in four dimensions. Phys. Rev. D80, 065001 (2009) arXiv:0709.3269

    ADS  Google Scholar 

  67. Basar G., Cherman A., Dorigoni D., Ünsal M.: Volume independence in the large N limit and an emergent fermionic symmetry. Phys. Rev. Lett. 111, 121601 (2013) arXiv:1306.2960

    Article  ADS  Google Scholar 

  68. Balitsky I., Yung A.: Instanton molecular vacuum in N = 1 supersymmetric quantum mechanics. Nucl. Phys. B274, 475 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  69. Vilenkin, N.: Translations of Mathematical Monographs: Special Functions and the Theory of Group Representations. American Mathematical Society, Providence (1968)

  70. Olver F.W., Lozier D.M., Boisvert, R.F., Clark, C.W. (eds.): Digital Library of Mathematical Functions: Online Companion to NIST Handbook of Mathematical Functions (CUP). National Insitute of Standards and Technology, Gaithersburg (2010)

  71. Gahramanov I., Tezgin K.: Remark on the Dunne–Ünsal relation in exact semiclassics. Phys. Rev. D93, 065037 (2016) arXiv:1512.08466

    ADS  Google Scholar 

  72. Zinn-Justin J., Jentschura U.D.: Multi-instantons and exact results. I: Conjectures, WKB expansions, and instanton interactions. Ann. Phys. 313, 197–267 (2004) arXiv:quant-ph/0501136

    Article  ADS  MathSciNet  Google Scholar 

  73. Zinn-Justin J., Jentschura U.D.: Multi-instantons and exact results. II: Specific cases, higher-order effects, and numerical calculations. Ann. Phys. 313, 269–325 (2004) arXiv:quant-ph/0501137

    Article  ADS  MathSciNet  Google Scholar 

  74. Aoyama H., Kikuchi H., Okouchi I., Sato M., Wada S.: Valley views: instantons, large order behaviors, and supersymmetry. Nucl. Phys. B553, 644–710 (1999) arXiv:hep-th/9808034

    Article  ADS  MathSciNet  Google Scholar 

  75. Aoyama H., Sato M., Tanaka T.: N fold supersymmetry in quantum mechanics: general formalism. Nucl. Phys. B619, 105–127 (2001) arXiv:quant-ph/0106037

    Article  ADS  MathSciNet  Google Scholar 

  76. Verbaarschot J.J.M., West P.C.: Instantons and Borel resummability for the perturbed supersymmetric anharmonic oscillator. Phys. Rev. D43, 2718–2725 (1991)

    ADS  MathSciNet  Google Scholar 

  77. Verbaarschot J.J.M., West P.C., Wu T.T.: Large order behavior of the supersymmetric anharmonic oscillator. Phys. Rev. D42, 1276–1284 (1990)

    ADS  MathSciNet  Google Scholar 

  78. Sulejmanpasic, T.: Global symmetries, volume independence and continuity. arXiv:1610.04009

  79. Basar G., Cherman A., McGady D.A.: Bose–Fermi degeneracies in large N adjoint QCD. JHEP 07, 016 (2015) arXiv:1409.1617

    Article  ADS  MathSciNet  Google Scholar 

  80. Basar G., Cherman A., Dienes K.R., McGady D.A.: Modularity and 4D-2D spectral equivalences for large-N gauge theories with adjoint matter. JHEP 06, 148 (2016) arXiv:1512.07918

    Article  ADS  MathSciNet  Google Scholar 

  81. AuroraScience Collaboration collaboration, Cristoforetti, M., Di Renzo, F., Scorzato, L.: New approach to the sign problem in quantum field theories: high density QCD on a Lefschetz thimble. Phys. Rev. D86, 074506 (2012). arXiv:1205.3996

  82. Cristoforetti M., Di Renzo F., Mukherjee A., Scorzato L.: Monte Carlo simulations on the Lefschetz thimble: taming the sign problem. Phys. Rev. D88, 051501 (2013) arXiv:1303.7204

    ADS  Google Scholar 

  83. Fujii, H., Honda, D., Kato, M., Kikukawa, Y., Komatsu, S., et al.: Hybrid Monte Carlo on Lefschetz thimbles—a study of the residual sign problem. JHEP 1310, 147 (2013). arXiv:1309.4371

  84. Aarts G., Bongiovanni L., Seiler E., Sexty D.: Some remarks on Lefschetz thimbles and complex Langevin dynamics. JHEP 1410, 159 (2014) arXiv:1407.2090

    Article  ADS  MathSciNet  Google Scholar 

  85. Witten E.: Analytic continuation Of Chern–Simons theory. AMS/IP Stud. Adv. Math. 50, 347–446 (2011) arXiv:1001.2933

    Article  MathSciNet  Google Scholar 

  86. Dumlu C.K., Dunne G.V.: The Stokes phenomenon and Schwinger vacuum pair production in time-dependent laser pulses. Phys. Rev. Lett. 104, 250402 (2010) arXiv:1004.2509

    Article  ADS  Google Scholar 

  87. Dumlu C.K., Dunne G.V.: Interference effects in Schwinger vacuum pair production for time-dependent laser pulses. Phys. Rev. D 83, 065028 (2011) arXiv:1102.2899

    Article  ADS  Google Scholar 

  88. Tanizaki Y., Koike T.: Real-time Feynman path integral with Picard–Lefschetz theory and its applications to quantum tunneling. Ann. Phys. 351, 250–274 (2014) arXiv:1406.2386

    Article  ADS  MathSciNet  Google Scholar 

  89. Cherman, A., Ünsal, M.: Real-time feynman path integral realization of instantons. arXiv:1408.0012

  90. Tanizaki Y., Hidaka Y., Hayata T.: Lefschetz-thimble analysis of the sign problem in one-site fermion model. New J. Phys. 18, 033002 (2016) arXiv:1509.07146

    Article  ADS  Google Scholar 

  91. Fujii H., Kamata S., Kikukawa Y.: Lefschetz thimble structure in one-dimensional lattice Thirring model at finite density. JHEP 11, 078 (2015) arXiv:1509.08176

    Article  ADS  Google Scholar 

  92. Alexandru A., Basar G., Bedaque P.: Monte Carlo algorithm for simulating fermions on Lefschetz thimbles. Phys. Rev. D93, 014504 (2016) arXiv:1510.03258

    ADS  Google Scholar 

  93. Hayata T., Hidaka Y., Tanizaki Y.: Complex saddle points and the sign problem in complex Langevin simulation. Nucl. Phys. B911, 94–105 (2016) arXiv:1511.02437

    Article  ADS  Google Scholar 

  94. Alexandru A., Basar G., Bedaque P.F., Ridgway G.W., Warrington N.C.: Sign problem and Monte Carlo calculations beyond Lefschetz thimbles. JHEP 05, 053 (2016) arXiv:1512.08764

    Article  ADS  Google Scholar 

  95. Alexandru, A., Basar, G., Bedaque, P.F., Vartak, S., Warrington, N.C.: Monte Carlo study of real time dynamics. arXiv:1605.08040

  96. Dunne, G.V., Unsal, M.: New methods in QFT and QCD: from large-N orbifold equivalence to bions and resurgence. arXiv:1601.03414

  97. ’t Hooft G.: Can we make sense out of quantum chromodynamics?. Subnucl. Ser. 15, 943 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can Kozçaz.

Additional information

Communicated by N. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozçaz, C., Sulejmanpasic, T., Tanizaki, Y. et al. Cheshire Cat Resurgence, Self-Resurgence and Quasi-Exact Solvable Systems. Commun. Math. Phys. 364, 835–878 (2018). https://doi.org/10.1007/s00220-018-3281-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3281-y

Navigation