Skip to main content
Log in

Limitations of Semidefinite Programs for Separable States and Entangled Games

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Semidefinite programs (SDPs) are a framework for exact or approximate optimization with widespread application in quantum information theory. We introduce a new method for using reductions to construct integrality gaps for SDPs, meaning instances where the SDP value is far from the true optimum. These are based on new limitations on the sum-of-squares (SoS) hierarchy in approximating two particularly important sets in quantum information theory, where previously no \({\omega(1)}\) -round integrality gaps were known:

  1. 1.

    The set of separable (i.e. unentangled) states, or equivalently, the \({2 \rightarrow 4}\) norm of a matrix.

  2. 2.

    The set of quantum correlations; i.e. conditional probability distributions achievable with local measurements on a shared entangled state.

Integrality gaps for the \({2\rightarrow 4}\) norm had previously been sought due to its connection to Small-Set Expansion (SSE) and Unique Games (UG).

In both cases no-go theorems were previously known based on computational assumptions such as the Exponential Time Hypothesis (ETH) which asserts that 3-SAT requires exponential time to solve. Our unconditional results achieve the same parameters as all of these previous results (for separable states) or as some of the previous results (for quantum correlations). In some cases we can make use of the framework of Lee–Raghavendra–Steurer (LRS) to establish integrality gaps for any SDP extended formulation, not only the SoS hierarchy. Our hardness result on separable states also yields a dimension lower bound of approximate disentanglers, answering a question of Watrous and Aaronson et al.

These results can be viewed as limitations on the monogamy principle, the PPT test, the ability of Tsirelson-type bounds to restrict quantum correlations, as well as the SDP hierarchies of Doherty–Parrilo–Spedalieri, Navascues–Pironio–Acin, and Berta–Fawzi–Scholz. Indeed a wide range of past work in quantum information can be described as using an SDP on one of the above two problems and our results put broad limits on these lines of argument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aaronson, S., Beigi, S., Drucker, A., Fefferman, B., Shor, P.: The power of unentanglement. In: Annual IEEE Conference on Computational Complexity, pp. 223–236 (2008). arXiv:0804.0802

  2. Aaronson S., Beigi S., Drucker A., Fefferman B., Shor P.: The power of unentanglement. Theory Comput. 5(1), 1–42 (2009) arXiv:0804.0802

    Article  MathSciNet  MATH  Google Scholar 

  3. Altunbulak M., Klyachko A.: The Pauli principle revisited. Commun. Math. Phys. 282(2), 287–322 (2008) arXiv:0802.0918

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Aubrun, G., Szarek, S.J.: Dvoretzky’s theorem and the complexity of entanglement detection (2015). arXiv:1510.00578

  5. Barak, B.: Sum of squares upper bounds, lower bounds, and open questions (2014). https://www.boazbarak.org/sos/prev/files/all-notes.pdf. Accessed 26 Feb 2019

  6. Barak, B., Brandão, F.G.S.L., Harrow, A.W., Kelner, J., Steurer, D., Zhou, Y.: (2012) Hypercontractivity, sum-of-squares proofs, and their applications. In: Proceedings of the 44th Symposium on Theory of Computing, STOC ’12, pp. 307–326. (2012). arXiv:1205.4484

  7. Brassard G., Buhrman H., Linden N., Méthot A.A., Tapp A., Unger F.: Limit on nonlocality in any world in which communication complexity is not trivial. Phys. Rev. Lett. 96, 250401 (2006) arXiv:quant-ph/0508042

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bäuml S., Christandl M., Horodecki K., Winter A.: Limitations on quantum key repeaters. Nat. Commun. 6, 6908 (2015) arXiv:1402.5927

    Article  Google Scholar 

  9. Brandão F.G.S.L., Christandl M., Yard J.: Faithful squashed entanglement. Commun. Math. Phys. 306(3), 805–830 (2011) arXiv:1010.1750

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Beigi, S.: NP vs QMA_log(2). 10(1&2), 0141–0151 (2010). arXiv:0810.5109

  11. Bell J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1(3), 195–200 (1964)

    Article  MathSciNet  Google Scholar 

  12. Berta, M., Fawzi, O., Scholz, V.B.: Quantum bilinear optimization (2015). arXiv:1506.08810

  13. Bhattiprolu, V., Guruswami, V., Lee, E.: Sum-of-squares certificates for maxima of random tensors on the sphere. In: LIPIcs-Leibniz International Proceedings in Informatics, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, vol. 81 (2017). arXiv:1605.00903

  14. Brandão, F.G.S.L., Harrow, A.W.: Product-state approximations to quantum ground states. In: Proceedings of the 45th Annual ACM Symposium on Theory of Computing, STOC ’13, pp. 871–880 (2013). arXiv:1310.0017

  15. Brandão, F.G.S.L., Harrow, A.W.: Quantum de Finetti theorems under local measurements with applications. In: Proceedings of the 45th Annual ACM Symposium on Theory of Computing, STOC ’13, pp. 861–870 (2013). arXiv:1210.6367

  16. Barrett J., Hardy L., Kent A.: No signaling and quantum key distribution. Phys. Rev. Lett. 95, 010503 (2005)

  17. Barak, B., Kelner, J.A., Steurer, D.: Rounding sum-of-squares relaxations. In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing, STOC ’14, pp. 31–40. ACM (2014). arXiv:1312.6652

  18. Bamps C., Pironio S.: Sum-of-squares decompositions for a family of Clauser–Horne–Shimony–Holt-like inequalities and their application to self-testing. Phys. Rev. A. 91, 052111 (2015) arXiv:1504.06960

    Article  ADS  Google Scholar 

  19. Braun, G., Pokutta, S., Roy, A.: Strong reductions for extended formulations (2016). arXiv:1512.04932

  20. Braun, G., Pokutta, S., Zink, D.: Inapproximability of combinatorial problems via small LPs and SDPs. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC ’15, pp. 107–116. ACM, New York (2015)

  21. Beigi S., Shor P.W.: Approximating the set of separable states using the positive partial transpose test. J. Math. Phys. 51(4), 042202 (2010) arXiv:0902.1806

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Barak, B., Steurer, D.: Sum-of-squares proofs and the quest toward optimal algorithms (2016). arXiv:1404.5236

  23. Blier, H., Tapp, A.: All languages in NP have very short quantum proofs. In: First International Conference on Quantum, Nano, and Micro Technologies, pp. 34–37. Los Alamitos, IEEE Computer Society (2009). arXiv:0709.0738

  24. Boyd S., Vandenberghe L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  25. Chefles A., Barnett S.M.: Complementarity and Cirel’son’s inequality. J. Phys. A: Math. Gen. 29(10), L237 (1996)

    Article  ADS  MATH  Google Scholar 

  26. Chen, J., Drucker, A.: Short multi-prover quantum proofs for SAT without entangled measurements (2010). arXiv:1011.0716

  27. Caves C.M., Fuchs C.A., Rüdiger S.: Unknown quantum states: the quantum de Finetti representation. J. Math. Phys. 43(9), 4537–4559 (2002) arXiv:quant-ph/0104088

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Cirel’son B.S.: Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4(2), 93–100 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  29. Chen, J., Ji, Z., Yu, N., Zeng, B.: Detecting consistency of overlapping quantum marginals by separability (2015). arXiv:1509.06591

  30. Christandl M., König R., Mitchison G., Renner R.: One-and-a-half quantum de Finetti theorems. Commun. Math. Phys. 273, 473–498 (2007) arXiv:quant-ph/0602130

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Chakraborty R., Mazziotti D.A.: Structure of the one-electron reduced density matrix from the generalized Pauli exclusion principle. Int. J. Quantum Chem. 115(19), 1305–1310 (2015)

    Article  Google Scholar 

  32. Christandl M., Schuch N., Winter A.: Entanglement of the antisymmetric state. Commun. Math. Phys. 311(2), 397–422 (2012) arXiv:0910.4151

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Diaconis P., Freedman D.: Finite exchangeable sequences. Ann. Probab. 8, 745–764 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  34. Doherty, A.C., Liang, Y.-C., Toner, B., Wehner, S.: The quantum moment problem and bounds on entangled multi-prover games. In: CCC ’08, pp. 199–210 (2008). arXiv:0803.4373

  35. Terhal B.M., DiVincenzo D.P., Leung D.W.: Quantum data hiding. IEEE Trans. Inf. Theory 48(3), 580 (2002) arXiv:quant-ph/0103098

    Article  MathSciNet  MATH  Google Scholar 

  36. Doherty A.C., Parrilo P.A., Spedalieri F.M.: A complete family of separability criteria. Phys. Rev. A. 69, 022308 (2003) arXiv:quant-ph/0308032

    Article  ADS  Google Scholar 

  37. Doherty A.C., Parrilo P.A., Spedalieri F.M.: Complete family of separability criteria. Phys. Rev. A. 69, 022308 (2004) arXiv:quant-ph/0308032

    Article  ADS  Google Scholar 

  38. Doherty, A.C., Wehner, S.: Convergence of SDP hierarchies for polynomial optimization on the hypersphere (2012). arXiv:1210.5048

  39. Gharibian S.: Strong NP-hardness of the quantum separability problem. QIC 10(3&4), 343–360 (2010) arXiv:0810.4507

    MathSciNet  MATH  Google Scholar 

  40. Goldreich O.: Computational Complexity: A Conceptual Perspective, 1 edn.. Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  41. Grigoriev D.: Linear lower bound on degrees of Positivstellensatz calculus proofs for the parity. Theor. Comput. Sci. 259, 613–622 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. Gurvits L.: Classical deterministic complexity of Edmonds’ problem and quantum entanglement (2003). arXiv:quant-ph/0303055

  43. Horodecki M., Horodecki P., Horodecki R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A. 223(1–2), 1–8 (1996) arXiv:quant-ph/9605038

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Helton W., McCullough S.: A positivstellensatz for non-commutative polynomials. Trans. Am. Math. Soc. 356(9), 3721–3737 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. Harrow A.W., Montanaro A.: Testing product states, quantum Merlin-Arthur games and tensor optimization. J. ACM 60(1), 3–1343 (2013) arXiv:1001.0017

    Article  MathSciNet  MATH  Google Scholar 

  46. Harrow, A.W., Natarajan, A., Wu, X.: An improved semidefinite programming hierarchy for testing entanglement (2015). arXiv:1506.08834

  47. Helton, J.W., Putinar, M.: Positive polynomials in scalar and matrix variables, the spectral theorem and optimization (2006). arXiv:math/0612103

  48. Ito, T., Kobayashi, H., Matsumoto, K.: Oracularization and two-prover one-round interactive proofs against nonlocal strategies. In: Proceedings: Twenty-Fourth Annual IEEE Conference on Computational Complexity (CCC 2009), pp. 217–228 (2009). arXiv:0810.0693

  49. Impagliazzo R., Paturi R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ito, T., Vidick, T.: A multi-prover interactive proof for NEXP sound against entangled provers. In: FOCS ’12 (2012). arXiv:1207.0550

  51. Khot, S.: On the power of unique 2-prover 1-round games. In: STOC, pp. 767–775 (2002)

  52. Kempe J., Kobayashi H., Matsumoto K., Toner B., Vidick T.: Entangled games are hard to approximate. SIAM J. Comput. 40(3), 848–877 (2011) arXiv:0704.2903

    Article  MathSciNet  MATH  Google Scholar 

  53. Klyachko, A.A.: The Pauli principle and magnetism (2013). arXiv:1311.5999

  54. Koenig R., Mitchison G.: A most compendious and facile quantum de Finetti theorem. J. Math. Phys. 50, 012105 (2009) arXiv:quant-ph/0703210

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Kothari, P.K., Meka, R., Raghavendra, P.: Approximating rectangles by juntas and weakly-exponential lower bounds for LP relaxations of CSPs. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 590–603. ACM (2017). arXiv:1610.02704

  56. Koenig R., Renner R.: A de Finetti representation for finite symmetric quantum states. J. Math. Phys. 46(12), 122108 (2005) arXiv:quant-ph/0410229

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Lancien C.: k-extendibility of high-dimensional bipartite quantum states (2015). arXiv:1504.06459

  58. Lasserre J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  59. Laurent M.: Sums of squares, moment matrices and optimization over polynomials. Emerg. Appl. Algebraic Geom. 149, 157–270 (2009)

    MathSciNet  MATH  Google Scholar 

  60. Liu, Y.-K.: The complexity of the consistency and N-representability problems for quantum states. Ph.D. thesis, University of California, San Diego (2007). arXiv:0712.3041

  61. Gall F.L., Nakagawa S., Nishimura H.: On QMA protocols with two short quantum proofs. Quantum Inf. Comput. 12, 0589 (2012) arXiv:1108.4306

    MathSciNet  MATH  Google Scholar 

  62. Lee, J.R., Raghavendra, P., Steurer, D.: Lower bounds on the size of semidefinite programming relaxations. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC ’15, pp. 567–576. ACM, New York (2015). arXiv:1411.6317

  63. Masanes L.: All bipartite entangled states are useful for information processing. Phys. Rev. Lett. 96, 150501 (2006) arXiv:quant-ph/0508071

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Mazziotti D.A.: Realization of quantum chemistry without wave functions through first-order semidefinite programming. Phys. Rev. Lett. 93, 213001 (2004)

    Article  ADS  Google Scholar 

  65. Matsumoto K., Shimono T., Winter A.: Remarks on additivity of the Holevo channel capacity and of the entanglement of formation. Commun. Math. Phys. 246, 427–442 (2004) arXiv:quant-ph/0206148

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Matthews, W., Wehner, S.: Finite blocklength converse bounds for quantum channels (2012). arXiv:1210.4722

  67. Nesterov Y.: Squared functional systems and optimization problems. High Perform. Optim. 13, 405–440 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  68. Navascues M., Owari M., Plenio M.B.: The power of symmetric extensions for entanglement detection. Phys. Rev. A 80, 052306 (2009) arXiv:0906.2731

    Article  ADS  MATH  Google Scholar 

  69. Navascués M., Pironio S., Acin A.: A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations. New J. Phys. 10(7), 073013 (2008) arXiv:0803.4290

    Article  ADS  Google Scholar 

  70. O’Donnell, R., Wright, J., Wu, C., Zhou, Y.: Hardness of robust graph isomorphism, lasserre gaps, and asymmetry of random graphs. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’14, pp. 1659–1677. SIAM (2014). arXiv:1401.2436

  71. Palazuelos, C.: Random constructions in Bell inequalities: a survey (2015). arXiv:1502.02175

  72. Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. Technical report, MIT, 2000. Ph.D Thesis

  73. Peres A.: Separability criterion for density matrices. Phys. Rev. Lett. 77(8), 1413–1415 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Pereszlényi, A.: Multi-prover quantum Merlin–Arthur proof systems with small gap (2012). arXiv:1205.2761

  75. Poulin D., Hastings M.B.: Markov entropy decomposition: a variational dual for quantum belief propagation. Phys. Rev. Lett. 106(8), 80403 (2011) arXiv:1012.2050

    Article  ADS  Google Scholar 

  76. Pironio S., Navascués M., Acín A.: Convergent relaxations of polynomial optimization problems with noncommuting variables. SIAM J. Optim. 20(5), 2157–2180 (2010) arXiv:0903.4368

    Article  MathSciNet  MATH  Google Scholar 

  77. Papadimitriou C.H., Yannakakis M.: Optimization, approximation, and complexity classes. J. Comput. Syst. Sci. 43, 425–440 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  78. Rains E.M.: A semidefinite program for distillable entanglement. IEEE Trans. Inf. Theory 47(7), 2921–2933 (2001) arXiv:quant-ph/0008047

    Article  MathSciNet  MATH  Google Scholar 

  79. Raghavendra, P., Steurer, D., Tulsiani, M.: Reductions between expansion problems. In: CCC, pp. 64–73 (2012). arXiv:1011.2586

  80. Mary Beth R.: Connecting n-representability to Weyl’s problem: the one-particle density matrix for N =  3 and R =  6. J. Phys. A: Math. Theor. 40(45), F961 (2007) arXiv:0706.1855

    Article  MathSciNet  MATH  Google Scholar 

  81. Reichardt B.W., Unger F., Vazirani U.: Classical command of quantum systems. Nature 496(7446), 456–460 (2013) arXiv:1209.0449

    Article  ADS  Google Scholar 

  82. Reichardt, B.W., Unger, F., Vazirani, U.: A classical leash for a quantum system: command of quantum systems via rigidity of chsh games. In: Proceedings of the 4th Conference on Innovations in Theoretical Computer Science, ITCS ’13, pp. 321–322 (2013). arXiv:1209.0448

  83. Schoenebeck, G.: Linear level Lasserre lower bounds for certain k-CSPs. In: Proceedings of the 2008 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’08, pp. 593–602. IEEE Computer Society, Washington, DC (2008)

  84. Shor N.Z.: An approach to obtaining global extremums in polynomial mathematical programming problems. Cybern. Syst. Anal. 23(5), 695–700 (1987)

    Article  MATH  Google Scholar 

  85. Slofstra, W.: Tsirelson’s problem and an embedding theorem for groups arising from non-local games (2016). arXiv:1606.03140

  86. Scholz, V.B., Werner, R.F.: Tsirelson’s problem (2008). arXiv:0812.4305

  87. Trevisan L.: On Khot’s unique games conjecture. Bull. AMS 49(1), 91–111 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  88. Tulsiani, Madhur: CSP gaps and reductions in the Lasserre hierarchy. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, pp. 303–312. ACM (2009)

  89. Vidick, T.: Three-player entangled XOR games are NP-hard to approximate. In: Proceedings of the 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, FOCS ’13, pp. 766–775. IEEE Computer Society (2013). arXiv:1302.1242

Download references

Acknowledgement

AWH and AN were funded by NSF Grant CCF-1629809 and AWH was funded by NSF grant CCF-1452616. XW was funded by the NSF Waterman Award of Scott Aaronson. All three authors (AWH, AN, and XW) were funded by ARO contract W911NF-12-1-0486. We are grateful to an anonymous STOC reviewer for pointing out a mistake in an earlier version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Natarajan.

Additional information

Communicated by M. M. Wolf

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harrow, A.W., Natarajan, A. & Wu, X. Limitations of Semidefinite Programs for Separable States and Entangled Games. Commun. Math. Phys. 366, 423–468 (2019). https://doi.org/10.1007/s00220-019-03382-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03382-y

Navigation