Skip to main content

Advertisement

Log in

The Generalized TAP Free Energy II

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In a recent paper (Chen et al. in The generalized TAP free energy, to appear in Comm. Pure Appl. Math.), we developed the generalized TAP approach for mixed p-spin models with Ising spins at positive temperature. Here we extend these results in two directions. We find a simplified representation for the energy of the generalized TAP states in terms of the Parisi measure of the model and, in particular, show that the energy of all states at a given distance from the origin is the same. Furthermore, we prove the analogues of the positive temperature results at zero temperature, which concern the ground-state energy and the organization of ground-state configurations in space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auffinger, A., Chen, W.-K.: The Parisi formula has a unique minimizer. Commun. Math. Phys. 335(3), 1429–1444 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  2. Auffinger, A., Chen, W.-K.: The Legendre structure of the Parisi formula. Commun. Math. Phys. 348(3), 751–770 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  3. Auffinger, A., Chen, W.-K.: Parisi formula for the ground state energy in the mixed \(p\)-spin model. Ann. Probab. 45(6B), 4617–4631 (2017)

    Article  MathSciNet  Google Scholar 

  4. Auffinger, A., Jagannath, A.: On spin distributions for generic \(p\)-spin models. J. Stat. Phys. 174, 316–332 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  5. Auffinger, A., Jagannath, A.: Thouless–Anderson–Palmer equations for generic \(p\)-spin glasses. Ann. Probab. 47(4), 2230–2256 (2019)

    Article  MathSciNet  Google Scholar 

  6. Belius, D., Kistler, N.: The TAP-Plefka variational principle for the spherical SK model. Commun. Math. Phys. 367(3), 991–1017 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  7. Ben Arous, G., Subag, E., Zeitouni, O.: Geometry and temperature chaos in mixed spherical spin glasses at low temperature—the perturbative regime. Comm. Pure Appl. Math. 73(8), 1732–1828 (2020)

    Article  MathSciNet  Google Scholar 

  8. Bolthausen, E.: An iterative construction of solutions of the TAP equations for the Sherrington–Kirkpatrick model. Commun. Math. Phys. 325(1), 333–366 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  9. Bolthausen, E.: A morita type proof of the replica-symmetric formula for SK. In: Gayrard, V., Arguin, L.-P., Kistler, N., Kourkova, I. (eds.) Statistical Mechanics of Classical and Disordered Systems, pp. 63–93. Springer, Cham (2019)

    Chapter  Google Scholar 

  10. Chatterjee, S.: Spin glasses and Stein’s method. Probab. Theory Related Fields 148(3–4), 567–600 (2010)

    Article  MathSciNet  Google Scholar 

  11. Chen, W.-K.: Variational representations for the Parisi functional and the two-dimensional Guerra–Talagrand bound. Ann. Probab. 45(6A), 3929–3966 (2017)

    Article  MathSciNet  Google Scholar 

  12. Chen, W.-K., Handschy, M., Lerman, G.: On the energy landscape of the mixed even p-spin model. Probab. Theory Related Fields 171(1–2), 53–95 (2018)

    Article  MathSciNet  Google Scholar 

  13. Chen, W.-K., Panchenko, D.: On the TAP free energy in the mixed \(p\)-spin models. Commun. Math. Phys. 362(1), 219–252 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  14. Chen, W.-K., Panchenko, D., Subag, E.: The generalized TAP free energy. To appear in Comm. Pure Appl. Math

  15. Guerra, F.: Broken replica symmetry bounds in the mean field spin glass model. Commun. Math. Phys. 233(1), 1–12 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  16. Jagannath, A., Tobasco, I.: A dynamic programming approach to the Parisi functional. Proc. Am. Math. Soc. 144(7), 3135–3150 (2016)

    Article  MathSciNet  Google Scholar 

  17. Mézard, M., Parisi, G., Sourlas, N., Toulouse, G., Virasoro, M.A.: On the nature of the spin-glass phase. Phys. Rev. Lett. 52, 1156 (1984)

    Article  ADS  Google Scholar 

  18. Mézard, M., Parisi, G., Sourlas, N., Toulouse, G., Virasoro, M.A.: Replica symmetry breaking and the nature of the spin-glass phase. J. de Physique 45, 843 (1984)

    Article  MathSciNet  Google Scholar 

  19. Mézard, M., Parisi, G., Virasoro, M.A.: Spin Glass Theory and Beyond World Scientific. Lecture Notes in Physics, vol. 9. World Scientific Publishing Co. Inc, Teaneck (1987)

    MATH  Google Scholar 

  20. Mézard, M., Virasoro, M.A.: The microstructure of ultrametricity. J. de Physique 46, 1293–1307 (1985)

    Article  MathSciNet  Google Scholar 

  21. Panchenko, D.: The Parisi ultrametricity conjecture. Ann. Math. 177(1), 383–393 (2013)

    Article  MathSciNet  Google Scholar 

  22. Panchenko, D.: The Sherrington–Kirkpatrick Model. Springer Monographs in Mathematics. Springer, New York (2013)

    Book  Google Scholar 

  23. Panchenko, D.: Spin glass models from the point of view of spin distributions. Ann. Probab. 41(3A), 1315–1361 (2013)

    Article  MathSciNet  Google Scholar 

  24. Panchenko, D.: The Parisi formula for mixed \(p\)-spin models. Ann. Probab. 42(3), 946–958 (2014)

    Article  MathSciNet  Google Scholar 

  25. Parisi, G.: Infinite number of order parameters for spin-glasses. Phys. Rev. Lett. 43, 1754–1756 (1979)

    Article  ADS  Google Scholar 

  26. Parisi, G.: A sequence of approximate solutions to the S-K model for spin glasses. J. Phys. A 13, L115 (1980)

    Article  ADS  Google Scholar 

  27. Subag, E.: The geometry of the Gibbs measure of pure spherical spin glasses. Invent. Math. 210(1), 135–209 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  28. Subag, E.: Free energy landscapes in spherical spin glasses. arXiv:1804.10576 (2018)

  29. Talagrand, M.: The Parisi formula. Ann. Math. 163(1), 221–263 (2006)

    Article  MathSciNet  Google Scholar 

  30. Talagrand, M.: Mean field models for spin glasses. Volume I, volume 54 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer, Berlin (2011)

  31. Thouless, D.J., Anderson, P.W., Palmer, R.G.: Solution of ‘solvable model of a spin glass’. Phys. Mag. 35(3), 593–601 (1977)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliran Subag.

Additional information

Communicated by H. Spohn

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

W. Chen: Partially supported by NSF grant DMS-17-52184.

D. Panchenko: Partially supported by NSERC.

E. Subag Supported by the Simons Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, WK., Panchenko, D. & Subag, E. The Generalized TAP Free Energy II. Commun. Math. Phys. 381, 257–291 (2021). https://doi.org/10.1007/s00220-020-03887-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03887-x

Navigation