Skip to main content
Log in

Long-Time Asymptotics for the Integrable Nonlocal Focusing Nonlinear Schrödinger Equation for a Family of Step-Like Initial Data

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the Cauchy problem for the integrable nonlocal focusing nonlinear Schrödinger (NNLS) equation \(iq_{t}(x,t)+q_{xx}(x,t)+2 q^{2}(x,t)\bar{q}(-x,t)=0 \) with the step-like initial data close, in a certain sense, to the “shifted step function” \(\chi _R(x)=AH(x-R)\), where H(x) is the Heaviside step function, and \(A>0\) and \(R>0\) are arbitrary constants. Our main aim is to study the large-t behavior of the solution of this problem. We show that for \(R\in \left( \frac{(2n-1)\pi }{2A},\frac{(2n+1)\pi }{2A}\right) \), \(n=1,2,\ldots \), the (xt) plane splits into \(4n+2\) sectors exhibiting different asymptotic behavior. Namely, there are \(2n+1\) sectors, where the solution decays to 0, whereas in the other \(2n+1\) sectors (alternating with the sectors with decay), the solution approaches (different) constants along each ray \(x/t=const\). Our main technical tool is the representation of the solution of the Cauchy problem in terms of the solution of an associated matrix Riemann–Hilbert problem and its subsequent asymptotic analysis following the ideas of the nonlinear steepest descent method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ablowitz, M.J., Segur, H.: Solitons and Inverse Scattering Transform. SIAM, Philadelphia (1981)

    Book  MATH  Google Scholar 

  2. Ablowitz, M.J., Feng, B.-F., Luo, X.-D., Musslimani, Z.H.: General soliton solution to a nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions. Nonlinearity 31, 5385 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Ablowitz, M.J., Luo, X.-D., Cole, J.: Solitons, the Korteweg–de Vries equation with step boundary values, and pseudo-embedded eigenvalues. J. Math. Phys. 59, 091406 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 110, 064105 (2013)

    Article  ADS  Google Scholar 

  5. Ablowitz, M.J., Musslimani, Z.H.: Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 915–946 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Andreiev, K., Egorova, I., Lange, T.L., Teschl, G.: Rarefaction waves of the Korteweg–de Vries equation via nonlinear steepest descent. J. Differ. Equ. 261, 5371–5410 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having P-T symmetry. Phys. Rev. Lett. 80, 5243 (1998)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Bikbaev, R.F.: On the shock waves in one-dimensional models with the cubic non-linearity. Theor. Math. Phys. 97(2), 191–212 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Biondini, G., Fagerstrom, E., Prinari, B.: Inverse scattering transform for the defocusing nonlinear Schrödinger equation with fully asymmetric non-zero boundary conditions. Physica D 333, 117–136 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Biondini, G., Kovacic, G.: Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions. J. Math. Phys. 55, 031506 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. Bludov, Yu., Konotop, V., Malomed, B.: Stable dark solitons in PT-symmetric dual-core waveguides. Phys. Rev. A 87, 013816 (2013)

    Article  ADS  Google Scholar 

  12. Boutet de Monvel, A., Kotlyarov, V.P., Shepelsky, D.: Focusing NLS equation: long-time dynamics of step-like initial data. Int. Math. Res. Not. 7, 1613–1653 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Boutet de Monvel, A., Lenells, J., Shepelsky, D.: The focusing NLS equation with step-like oscillating background: scenarios of long-time asymptotics. arXiv:2003.08862 (2020)

  14. Brody, D.C.: PT-symmetry, indefinite metric, and nonlinear quantum mechanics. J. Phys. A: Math. Theor. 50, 485202 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. Buckingham, R., Venakides, S.: Long-time asymptotics of the nonlinear Schrödinger equation shock problem. Commun. Pure Appl. Math. 60, 1349–1414 (2007)

    Article  MATH  Google Scholar 

  16. Deift, P.A., Its, A.R., Zhou, X.: Long-time asymptotics for integrable nonlinear wave equations. In: Fokas, A.S., Zakharov, V.E. (eds.) Important Developments in Soliton Theory 1980–1990, pp. 181–204. Springer, New York (1993)

    Chapter  Google Scholar 

  17. Deift, P., Kamvissis, S., Kriecherbauer, T., Zhou, X.: The Toda rarefaction problem. Commun. Pure Appl. Math. XLIX, 35–83 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Deift, P.A., Venakides, S., Zhou, X.: The collisionless shock region for the long-time behavior of solutions of the KdV equation. Commun. Pure Appl. Math. 47(2), 199–206 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Deift, P.A., Venakides, S., Zhou, X.: New results in small dispersion KdV by an extension of the steepest descent method for Riemann–Hilbert problems. Int. Math. Res. Not. 6, 286–99 (1997)

    Article  MathSciNet  Google Scholar 

  20. Deift, P.A., Zhou, X.: A steepest descend method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation. Ann. Math. 137(2), 295–368 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Egorova, I., Gladka, Z., Kotlyarov, V., Teschl, G.: Long-time asymptotics for the Korteweg–de Vries equation with steplike initial data. Nonlinearity 26, 1839–1864 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. El, G.A., Geogjaev, V.V., Gurevich, A.V., Krylov, A.L.: Decay of an initial discontinuity in the defocusing NLS hydrodynamics. Physica D 87, 186–192 (1995)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. Faddeev, L.D., Takhtajan, L.A.: Hamiltonian Methods in the Theory of Solitons. Springer Series in Soviet Mathematics. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  24. Fokas, A.S.: Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 319–324 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. Gadzhimuradov, T., Agalarov, A.: Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrödinger equation. Phys. Rev. A 93, 062124 (2016)

    Article  ADS  Google Scholar 

  26. Gerdjikov, V.S., Saxena, A.: Complete integrability of nonlocal nonlinear Schrödinger equation. J. Math. Phys. 58, 013502 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. Gurevich, A.V., Pitaevskii, L.P.: Nonstationary structure of a collisionless shock wave. Zh. Eksp. Teor. Fiz. 65, 590–604 (1973)

    ADS  Google Scholar 

  28. Gürses, M., Pekcan, A.: Nonlocal nonlinear Schrödinger equations and their soliton solutions. J. Math. Phys. 59, 051501 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. Jenkins, R.: Regularization of a sharp shock by the defocusing nonlinear Schrödinger equation. Nonlinearity 28, 2131–2180 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. Hruslov, E.J.: Asymptotics of the solution of the Cauchy problem for the Korteweg–de Vries equation with initial data of step type. Math. USSR-Sb. 28, 229–248 (1976)

    Article  Google Scholar 

  31. Its, A.R.: Asymptotic behavior of the solutions to the nonlinear Schrödinger equation, and isomonodromic deformations of systems of linear differential equations. Doklady Akad. Nauk SSSR 261(1), 14–18 (1981)

    MathSciNet  Google Scholar 

  32. Kamvissis, S.: Long time behavior for the focusing nonlinear Schroedinger equation with real spectral singularities. Commun. Math. Phys. 180(2), 325–342 (1996)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  33. Konotop, V.V., Yang, J., Zezyulin, D.A.: Nonlinear waves in PT-symmetric systems. Rev. Mod. Phys. 88, 035002 (2016)

    Article  ADS  Google Scholar 

  34. Kotlyarov, V.P., Khruslov, E.Y.: Solitons of the nonlinear Schrödinger equation, which are generated by the continuous spectrum. Teor. Mat. Fiz. 68(2), 172–86 (1986)

    Article  Google Scholar 

  35. Kotlyarov, V.P., Minakov, A.M.: Riemann–Hilbert problem to the modified Korteveg–deVries equation: long-time dynamics of the step-like initial data. J. Math. Phys. 51, 093506 (2010)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. Lenells, J.: The nonlinear steepest descent method for Riemann–Hilbert problems of low regularity. Indiana Univ. Math. 66, 1287–1332 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Manakov, S.V.: Nonlinear Fraunhofer diffraction. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki. Pis’ma v Redaktsiyu 65, 10 (1973)

    Google Scholar 

  38. McLaughlin, K.T.-R., Miller, P.D.: The \(\bar{\partial }\) steepest descent method and the asymptotic behavior of polynomials orthogonal on the unit circle with fixed and exponentially varying nonanalytic weights. Int. Math. Res. Pap. 48673, 177 (2006)

    MATH  Google Scholar 

  39. McLaughlin, K.T.-R.,Miller, P.D.: The \(\bar{\partial }\) steepest descent method for orthogonal polynomials on the real line with varying weights. Int. Math. Res. Not. 2008, rnn075 (2008)

  40. Michor, J., Sakhnovich, A.L.: GBDT and algebro-geometric approaches to explicit solutions and wave functions for nonlocal NLS. J. Phys. A: Math. Theor. 52, 025201 (2018)

  41. Novikov, S., Manakov, S.V., Pitaevskii, L.P., Zakharov, V.E.: Theory of Solitons: The Inverse Scattering Method. New York Consultants Bureau (1984)

  42. Onorato, M., Osborne, A.R., Serio, M.: Modulational instability in crossing sea states: a possible mechanism for the formation of freak waves. Phys. Rev. Lett. 96, 014503 (2006)

    Article  ADS  Google Scholar 

  43. Rybalko, Y., Shepelsky, D.: Long-time asymptotics for the integrable nonlocal nonlinear Schrödinger equation. J. Math. Phys. 60, 031504 (2019)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  44. Rybalko, Y., Shepelsky, D.: Long-time asymptotics for the integrable nonlocal nonlinear Schrödinger equation with step-like initial data. J. Differ. Equ. 270, 694–724 (2021)

    Article  MATH  ADS  Google Scholar 

  45. Rybalko, Ya., Shepelsky, D.: Curved wedges in the long-time asymptotics for the integrable nonlocal nonlinear Schrödinger equation. arXiv:2004.05987

  46. Venakides, S., Deift, P., Oba, R.: The Toda shock problem. Commun. Pure Appl. Math. 44, 1171–1242 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  47. Vinayagam, P.S., Radha, R., AlKhawaja, U., Ling, L.: New classes of solutions in the coupled PT symmetric nonlocal nonlinear Schrödinger equations with four wave mixing. Commun. Nonlinear Sci. Numer. Simulat. 59, 387–395 (2018)

    Article  MATH  ADS  Google Scholar 

  48. Sarma, A., Miri, M., Musslimani, Z., Christodoulides, D.: Continuous and discrete Schrödinger systems with parity-time-symmetric nonlinearities. Phys. Rev. E 89, 052918 (2014)

    Article  ADS  Google Scholar 

  49. Yang, J.: General N-solitons and their dynamics in several nonlocal nonlinear Schrödinger equations. Phys. Lett. A 383(4), 328–337 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  50. Yang, J.: Nonlinear Waves in Integrable and Nonintegrable Systems. SIAM, Philadelphia (2010)

    Book  MATH  Google Scholar 

  51. Znojil, M., Borisov, D.I.: Two patterns of PT-symmetry breakdown in a non-numerical six-state simulation. Ann. Phys. NY 394, 40–49 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referee for valuable comments which allowed us to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Rybalko.

Additional information

Communicated by H.-T. Yau.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybalko, Y., Shepelsky, D. Long-Time Asymptotics for the Integrable Nonlocal Focusing Nonlinear Schrödinger Equation for a Family of Step-Like Initial Data. Commun. Math. Phys. 382, 87–121 (2021). https://doi.org/10.1007/s00220-021-03941-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-03941-2

Navigation