Skip to main content
Log in

Deterministic center of pressure patterns characterize postural instability in Parkinson’s disease

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Static posturographic recordings were obtained from six Parkinson’s patients and six age-matched, healthy control participants. The availability of vision and visuo-spatial cognitive load were manipulated. Postural sway patterns were analyzed using recurrence quantification analysis (RQA), which revealed differences in center of pressure (COP) dynamics between Parkinson’s and control participants. AP COP trajectories for the Parkinson’s group were not only significantly more variable than for the control group, but also exhibited distinct patterns of temporal dynamics. The visual manipulation did not differentially affect the two groups. No cognitive load effects were found. The results are generally consistent with the hypothesis that pathological physiological systems exhibit a tendency for less flexible, more deterministic dynamic patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adkin AL, Frank JS, Jog MS (2003) Fear of falling and postural control in Parkinson’s disease. Mov Disord 18:496–502

    Article  PubMed  Google Scholar 

  • Akritas MG (1990) The rank transform method in some two-factor designs. J Am Stat Assoc 85:73–78

    MATH  MathSciNet  Google Scholar 

  • Akritas MG, Arnold SF (1994) Fully nonparametric hypotheses for factorial designs I: multivariate repeated-measures designs. J Am Stat Assoc 89:336–343

    MATH  MathSciNet  Google Scholar 

  • Balasubramaniam R, Riley M, Turvey MT (2000) Specificity of postural sway to the demands of a precision task. Gait Posture 11:12–24

    Article  PubMed  CAS  Google Scholar 

  • Blaszczyk JW, Klonowski W (2001) Postural stability and fractal dynamics. Acta Neurobiol Exp 61:105–112

    CAS  Google Scholar 

  • Bloem BR, Grimbergen YA, Cramer M, Valkenburg V (2000) “Stops walking when talking” does not predict falls in Parkinson’s disease. Ann Neurol 48:268

    Article  CAS  PubMed  Google Scholar 

  • Bloem BR, Visser JE, Carpenter MG (2001) Compensatory postural strategies in patients with longstanding balance impairment. In: van der Burg JCE, Fong BF, Hijl MIJ, Huys R, Pijnappels M, Post AA (eds) Balance at all times: proceedings of the fifth symposium of the institute for fundamental and clinical human movement sciences. Digital Printing Partners, Utrecht, The Netherlands, pp 51–73

    Google Scholar 

  • Bronstein M, Hood JD, Grest MA, Panagi G (1990) Visual control of balance in cerebellar and Parkinsonian syndromes. Brain 113:767–779

    PubMed  Google Scholar 

  • Bronte-Stewart HM, Minn AY, Rodrigues K, Buckley EL, Nashner LM (2002) Postural instability in idiopathic Parkinson’s disease: the role of medication and unilateral pallidotomy. Brain 125:2100–2114

    Article  PubMed  Google Scholar 

  • Brunner E, Dette H, Munk A (1997) Box-type approximations in nonparametric factorial designs. J Am Stat Assoc 92:1494–1502

    MATH  MathSciNet  Google Scholar 

  • Carroll JP, Freedman W (1993) Nonstationarity properties of postural sway. J Biomech 26:409–416

    Article  PubMed  CAS  Google Scholar 

  • Chiari L, Cappello A, Lenzi D, Della Croce U. (2000) An improved technique for the extraction of stochastic parameters from stabilograms. Gait Posture 12:225–234

    PubMed  CAS  Google Scholar 

  • Collins JJ, De Luca CJ (1993) Open-loop and closed-loop control of posture: a random-walk analysis of center-of-pressure trajectories. Exp Brain Res 95:308–318

    PubMed  CAS  Google Scholar 

  • Collins JJ, De Luca CJ (1995) The effects of visual input on open-loop and closed-loop postural control mechanisms. Exp Brain Res 10:151–163

    Google Scholar 

  • Contin M, Riva R, Baruzzi A, Albani F, Macri S, Martinelli P (1996) Postural stability in Parkinson’s disease: the effects of disease severity and acute levodopa dosing. Parkinsonism Relat Disord 2:29–33

    Article  CAS  PubMed  Google Scholar 

  • Dault M, Yardley L, Frank J (2003) Does articulation contribute to modifications of postural control during dual-task paradigms?. Cogn Brain Res 16:434–440

    Article  Google Scholar 

  • Delignieres D, Deschamps T, Legros A, Caillou N (2003) A methodological note on nonlinear time series analysis: is Collins and De Luca’s (1993) open- and closed-loop model a statistical artifact?. J Mot Behav 35:86–96

    PubMed  Google Scholar 

  • Dijkstra TMH. (2000) A gentle introduction to the dynamic set-point model of human postural control during perturbed stance. Hum Mov Sci 19:567–595

    Article  Google Scholar 

  • Duarte M, Zatsiorsky VM (2000) On the fractal properties of natural human standing. Neurosci Lett 283:173–176

    Article  PubMed  CAS  Google Scholar 

  • Duarte M, Zatsiorsky VM (2001) Long-range correlations in human standing. Phys Lett A 283:124–128

    Article  MATH  CAS  ADS  Google Scholar 

  • Eckmann JP, Kamphorst SO, Ruelle D (1987) Recurrence plots of dynamical systems. Europhys Lett 4:973–977

    ADS  Google Scholar 

  • Elble RJ, Koller WC (1990) Tremor. Johns Hopkins University, Baltimore, MD

    Google Scholar 

  • van Emmerik RE, van Wegen EE (2000) On variability and stability in human movement. J Appl Biomech 16:394–406

    Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state: a practical method for grading the state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  PubMed  CAS  Google Scholar 

  • Foltynie T, Lewis S, Barker R (2002) Parkinson’s disease: your questions answered. Churchill Livingstone

  • Goldberger AL (1997) Fractal variability versus pathologic periodicity: complexity loss and stereotypy in disease. Perspect Biol Med 40:543–561

    PubMed  CAS  Google Scholar 

  • Goldberger AL, Peng CK, Lipsitz LA (2002) What is physiologic complexity and how does it change with aging and disease?. Neurobiol Aging 23:23–26

    Article  PubMed  Google Scholar 

  • Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression, and mortality. Neurology 17:427–442

    PubMed  CAS  Google Scholar 

  • Horak FB, Nutt JG, Nashner LM (1992) Postural inflexibility in Parkinsonian subjects. J Neurol Sci 11:46–58

    Article  Google Scholar 

  • Iwanski J, Bradley E (1998) Recurrence plot analysis: to embed or not to embed?. Chaos 8:861–871

    PubMed  ADS  Google Scholar 

  • Kelso JAS (1995) Dynamic patterns: the self-organization of brain and behavior. MIT, Cambridge, MA

    Google Scholar 

  • Koller WC, Glatt S, Vetere-Overfield B, Hassanein R (1989) Falls and Parkinson’s disease. Clin Neuropharm 12:98–105

    Article  CAS  Google Scholar 

  • Marchese R, Bove M, Abbruzzese MD (2003) Effect of cognitive and motor tasks on postural stability in Parkinson’s disease: a posturographic study. Mov Disord 18:652–658

    Article  PubMed  Google Scholar 

  • Maurer C, Mergner T, Xie J, Faist M, Pollak P, Lucking CH (2003) Effect of chronic bilateral subthalamic nucleus (STN) stimulation on postural control in Parkinson’s disease. Brain 126:1146–1163

    Article  PubMed  CAS  Google Scholar 

  • Maurer C, Mergner T, Peterka RJ (2004) Abnormal resonance behavior of the postural control loop in Parkinson’s disease. Exp Brain Res 157:369–376

    Article  PubMed  CAS  Google Scholar 

  • Melnick ME, Dowling GA, Aminoff MJ, Barbaro NM (1999) Effect of pallidotomy on postural control and motor function in Parkinson’s disease. Arch Neurol (Chicago) 56:1361–1365

    CAS  Google Scholar 

  • Milton JG, Black D (1995) Dynamic diseases in psychiatry and neurology. Chaos 5:8–13

    Article  PubMed  ADS  Google Scholar 

  • Mitchell SL, Collins JJ, De Luca CJ, Burrows A, Lipsitz LA (1995) Open-loop and closed-loop postural control mechanisms in Parkinson’s disease: increased mediolateral activity during quiet standing. Neurosci Lett 197:133–136

    Article  PubMed  CAS  Google Scholar 

  • Morris M, Iansek R, Smithson F, Huxham F. (2000) Postural instability in Parkinson’s disease: a comparison with and without a concurrent task. Gait Posture 12:205–216

    Article  PubMed  CAS  Google Scholar 

  • Mouradian MM (2002) Recent advances in the genetics and pathogenesis of Parkinson disease. Neurology 58:179–185

    PubMed  Google Scholar 

  • Newell KM, Slobounov SM, Slobounova E, Molenaar PCM (1997) Stochastic processes in postural center-of-pressure profiles. Exp Brain Res 113:158–164

    PubMed  CAS  Google Scholar 

  • Pellechia GL, Shockley K (2005) Application of recurrence quantification analysis: influence of cognitive activity on postural fluctuations. In: Riley MA, Van Orden GC (eds) Tutorials in contemporary nonlinear methods for the behavioral sciences. Digital publication available at http://www.nsf.gov/sbe/bcs/pac/nmbs/nmbs.jsp, pp 95–141

  • Peterka RJ. (2000) Postural control model interpretation of stabilogram-diffusion analysis. Biol Cybern 82:335–343

    Article  PubMed  CAS  Google Scholar 

  • Powell GM, Dzendolet E (1984) Power spectral density analysis of lateral human standing sway. J Mot Behav 16:424–441

    PubMed  CAS  Google Scholar 

  • Riccio GE (1993) Information in movement variability about the qualitative dynamics of posture and orientation. In: Newell KM, Corcos D (eds) Variability and motor control. Human Kinetics, Champaign, IL, pp 317–357

    Google Scholar 

  • Riley MA, Clark S (2003) Recurrence analysis of human postural sway during the sensory organization test. Neurosci Lett 342:45–48

    Article  PubMed  CAS  Google Scholar 

  • Riley MA, Turvey MT (2002) Variability and determinism in motor behavior. J Mot Behav 34:99–125

    Article  PubMed  Google Scholar 

  • Riley MA, Balasubramaniam R, Mitra S, Turvey MT (1998) Visual influences on center of pressure dynamics in upright posture. Ecol Psychol 10:65–92

    Google Scholar 

  • Riley MA, Balasubramaniam R, Turvey MT (1999) Recurrence quantification analysis of postural fluctuations. Gait Posture 9:65–78

    Article  PubMed  CAS  Google Scholar 

  • Riley MA, Baker AA, Schmit JM, Weaver E (2005) Effects of visual and auditory short-term memory tasks on the spatiotemporal dynamics and variability of postural sway. J Mot Behav 37:311–324

    PubMed  CAS  Google Scholar 

  • Rocchi L, Chiari L, Horak FB (2002) Effects of deep brain stimulation and levodopa on postural sway in Parkinson’s disease. J Neurol Neurosurg Psychiatr 73:267–274

    Article  PubMed  CAS  Google Scholar 

  • Rocchi L, Chiari L, Cappello A, Gross A, Horak FB (2004) Comparison between subthalamic nucleus and globus pallidus internus stimulation for postural performance in Parkinson’s disease. Gait Posture 19:172–183

    Article  PubMed  Google Scholar 

  • Rougier P (1999) Automatic determination of the transition between successive control mechanisms in upright stance assessed by modeling of the center of pressure. Arch Phys Med Rehabil 69:395–400

    Google Scholar 

  • Schieppati M, Nardone A (1991) Free and supported stance in Parkinson’s disease The effect of posture and “postural set” on leg muscle responses to perturbation, and its relation to the severity of the disease. Brain 114:1227–1244

    PubMed  Google Scholar 

  • Schieppati M, Hugon M, Grasso M, Nardone A, Galante M (1994) The limits of equilibrium in young and elderly normal subjects and in parkinsonians. Electroencephalogr Clin Neurophysiol 93:286–298

    Article  PubMed  CAS  Google Scholar 

  • Schmit JM, Regis D, Riley MA (2005) Dynamic patterns of postural sway in ballet dancers and track athletes. Exp Brain Res 163:370–378

    Article  PubMed  Google Scholar 

  • Schumann T, Redfern MS, Furman JM, El-Jaroudi A, Chaparro LF (1995) Time-frequency analysis of postural sway. J Biomech 28:603–637

    Article  PubMed  CAS  Google Scholar 

  • Shepard RN, Metzler J (1971) Mental rotation of three-dimensional objects. Science 171:701–703

    PubMed  CAS  ADS  Google Scholar 

  • Stolze H, Klebe S, Zechlin C, Baecker C, Friege L, Deuschl G (2004) Falls in frequent neurological diseases—prevalence, risk factors, and aetiology. J Neurol 251:79–84

    Article  PubMed  Google Scholar 

  • Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Testing for nonlinearity in time series: the method of surrogate data. Physica D 58:77–94

    Article  ADS  Google Scholar 

  • Thompson GL (1991) A unified approach to rank tests for multivariate and repeated measures designs. J Am Stat Assoc 86:410–419

    MATH  Google Scholar 

  • Vaillancourt DE, Newell KM (2002) Changing complexity in human behavior and physiology through aging and disease. Neurobiol Aging 23:1–11

    Article  PubMed  Google Scholar 

  • Viitasalo MK, Kampman V, Sotaniemi KA, Leppavuori S, Myllyla VV, Korpelainen JT (2002) Analysis of sway in Parkinson’s disease using a new inclinometry-based method. Mov Disord 17:663–669

    Article  PubMed  Google Scholar 

  • Webber CL Jr, Zbilut JP (1994) Dynamical assessment of physiological systems and states using recurrence plot strategies. J Appl Physiol 76:965–973

    PubMed  Google Scholar 

  • Webber CL Jr, Zbilut JP (1996). Assessing deterministic structures in physiological systems using recurrence plot strategies. In: Khoo MCK (ed) Bioengineering approaches to pulmonary physiology and medicine. Plenum, New York, pp 137–148

    Google Scholar 

  • Webber CJ Jr, Zbilut JP (2005) Recurrence quantification analysis of nonlinear dynamical systems. In: Riley MA, Van Orden GC (eds) Tutorials in contemporary nonlinear methods for the behavioral sciences. Digital publication available at http://www.nsf.gov/sbe/bcs/pac/nmbs/nmbs.jsp, pp 26–94

  • Webber CL Jr, Schmidt MA, Walsh JM (1995) Influence of isometric loading on biceps EMG dynamics as assessed by linear and nonlinear tools. J Appl Physiol 78:814–822

    PubMed  Google Scholar 

  • van Wegen EE, van Emmerik REA, Wagenaar RC, Ellis T (2001) Stability boundaries and lateral postural control in Parkinson’s disease. Mot Control 3:254–269

    Google Scholar 

  • Woollacott M, Shumway-Cook A (2002) Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture 16:1–14

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The research reported in this paper was part of a master’s thesis by J.M. Schmit. Preparation of this manuscript was supported in part by the United States Army Medical Research Acquisition Activity (award #W81XWH-04-1-0306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Riley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmit, J.M., Riley, M.A., Dalvi, A. et al. Deterministic center of pressure patterns characterize postural instability in Parkinson’s disease. Exp Brain Res 168, 357–367 (2006). https://doi.org/10.1007/s00221-005-0094-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0094-y

Keywords

Navigation