Skip to main content
Log in

The role of the human ventral premotor cortex in counting successive stimuli

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Adult humans have the ability to count large numbers of successive stimuli exactly. What brain areas underlie this uniquely human process? To identify the candidate brain areas, we first used functional magnetic resonance imaging, and found that the upper part of the left ventral premotor cortex was preferentially activated during counting of successive sensory stimuli presented 10–22 times, while the area was not activated during small number counting up to 4. We then used transcranial magnetic stimulation to assess the necessity of this area, and found that stimulation of this area preferentially disrupted subjects’ exact large number enumeration. Stimulation to the area affected neither subjects’ number word perception nor their ability to perform a non-numerical sequential letter task. While further investigation is necessary to determine the precise role of the left ventral premotor cortex, the results suggest that the area is indispensably involved for large number counting of successive stimuli, at least for the types of tasks in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bremmer F, Schlack A, Shah NJ, Zafiris O, Kubischik M, Hoffmann K, Zilles K, Fink GR (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29:287–296

    Article  PubMed  CAS  Google Scholar 

  • Catalan MJ, Honda M, Weeks RA, Cohen LG, Hallett M (1998) The functional neuroanatomy of simple and complex sequential finger movements: a PET study. Brain 121(Pt 2):253–264

    Article  PubMed  Google Scholar 

  • Chochon F, Cohen L, van de Moortele PF, Dehaene S (1999) Differential contributions of the left and right inferior parietal lobules to number processing. J Cogn Neurosci 11:617–630

    Article  PubMed  CAS  Google Scholar 

  • Cipolotti L, Butterworth B, Denes G (1991) A specific deficit for numbers in a case of dense acalculia. Brain 114(Pt 6):2619–2637

    Article  PubMed  Google Scholar 

  • Corthout E, Uttl B, Ziemann U, Cowey A, Hallett M (1999) Two periods of processing in the (circum) striate visual cortex as revealed by transcranial magnetic stimulation. Neuropsychologia 37:137–145

    Article  PubMed  CAS  Google Scholar 

  • Dehaene S, Spelke E, Pinel P, Stanescu R, Tsivkin S (1999) Sources of mathematical thinking: behavioral and brain-imaging evidence. Science 284:970–974

    Article  PubMed  CAS  Google Scholar 

  • Dehaene S, Molko N, Cohen L, Wilson AJ (2004) Arithmetic and the brain. Curr Opin Neurobiol 14:218–224

    Article  PubMed  CAS  Google Scholar 

  • Friston KJ, Holmes AP, Price CJ, Buchel C, Worsley KJ (1999) Multisubject fMRI studies and conjunction analyses. Neuroimage 10:385–396

    Article  PubMed  CAS  Google Scholar 

  • Friston KJ, Penny WD, Glaser DE (2005) Conjunction revisited. Neuroimage 25:661–667

    Article  PubMed  Google Scholar 

  • Gallistel CR, Gelman R (2000) Non-verbal numerical cognition: from reals to integers. Trends Cogn Sci 4:59–65

    Article  PubMed  Google Scholar 

  • Gordon P (2004) Numerical cognition without words: evidence from Amazonia. Science 306:496–499

    Article  PubMed  CAS  Google Scholar 

  • Hallett M (2000) Transcranial magnetic stimulation and the human brain. Nature 406:147–150

    Article  PubMed  CAS  Google Scholar 

  • Hauser MD, Tsao F, Garcia P, Spelke ES (2003) Evolutionary foundations of number: spontaneous representation of numerical magnitudes by cotton-top tamarins. Proc R Soc Lond B Biol Sci 270:1441–1446

    Article  Google Scholar 

  • Kansaku K, Yamaura A, Kitazawa S (2000) Sex differences in lateralization revealed in the posterior language areas. Cereb Cortex 10:866–872

    Article  PubMed  CAS  Google Scholar 

  • Kansaku K, Hanakawa T, Wu T, Hallett M (2004) A shared neural network for simple reaction time. Neuroimage 22:904–911

    Article  PubMed  Google Scholar 

  • Kansaku K, Johnson A, Grillon ML, Garraux G, Sadato N, Hallett M (2006) Neural correlates of counting of sequential sensory and motor events in the human brain. Neuroimage 31:649–660

    Article  PubMed  Google Scholar 

  • Nieder A (2005) Counting on neurons: the neurobiology of numerical competence. Nat Rev Neurosci 6:177–190

    Article  PubMed  CAS  Google Scholar 

  • Nieder A, Freedman DJ, Miller EK (2002) Representation of the quantity of visual items in the primate prefrontal cortex. Science 297:1708–1711

    Article  PubMed  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Piazza M, Mechelli A, Butterworth B, Price CJ (2002) Are subitizing and counting implemented as separate or functionally overlapping processes? Neuroimage 15:435–446

    Article  PubMed  Google Scholar 

  • Pica P, Lemer C, Izard V, Dehaene S (2004) Exact and approximate arithmetic in an Amazonian indigene group. Science 306:499–503

    Article  PubMed  CAS  Google Scholar 

  • Price CJ, Friston KJ (1997) Cognitive conjunction: a new approach to brain activation experiments. Neuroimage 5:261–270

    Article  PubMed  CAS  Google Scholar 

  • Sathian K, Simon TJ, Peterson S, Patel GA, Hoffman JM, Grafton ST (1999) Neural evidence linking visual object enumeration and attention. J Cogn Neurosci 11:36–51

    Article  PubMed  CAS  Google Scholar 

  • Sawamura H, Shima K, Tanji J (2002) Numerical representation for action in the parietal cortex of the monkey. Nature 415:918–922

    Article  PubMed  CAS  Google Scholar 

  • Schubotz RI, von Cramon DY (2003) Functional–anatomical concepts of human premotor cortex: evidence from fMRI and PET studies. Neuroimage 20(Suppl. 1):S120–S131

    Article  PubMed  Google Scholar 

  • Simon O, Mangin JF, Cohen L, Le Bihan D, Dehaene S (2002) Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron 33:475–487

    Article  PubMed  CAS  Google Scholar 

  • Spielman DM, Adalsteinsson E, Lim KO (1998) Quantitative assessment of improved homogeneity using higher-order shims for spectroscopic imaging of the brain. Magn Reson Med 40:376–382

    Article  PubMed  CAS  Google Scholar 

  • Stanescu-Cosson R, Pinel P, van De Moortele PF, Le Bihan D, Cohen L, Dehaene S (2000) Understanding dissociations in dyscalculia: a brain imaging study of the impact of number size on the cerebral networks for exact and approximate calculation. Brain 123(Pt 11):2240–2255

    Article  PubMed  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planer stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach to cerebral imaging. Thieme, New York

    Google Scholar 

  • Trick LM, Pylyshyn ZW (1994) Why are small and large numbers enumerated differently? A limited-capacity preattentive stage in vision. Psychol Rev 101:80–102

    Article  PubMed  CAS  Google Scholar 

  • Uller C, Jaeger R, Guidry G, Martin C (2003) Salamanders (Plethodon cinereus) go for more: rudiments of number in an amphibian. Anim Cogn 6:105–112

    PubMed  Google Scholar 

  • Walsh V (2003) A theory of magnitude: common cortical metrics of time, space and quantity. Trends Cogn Sci 7:483–488

    Article  PubMed  Google Scholar 

  • Wise SP (1985) The primate premotor cortex: past, present, and preparatory. Annu Rev Neurosci 8:1–19

    Article  PubMed  CAS  Google Scholar 

  • Wu T, Kansaku K, Hallett M (2004) How self-initiated memorized movements become automatic: a functional MRI study. J Neurophysiol 91:1690–1698

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank B.J. Richmond, H. Shibasaki, S. Yamane, and anonymous reviewers for their valuable comments, T. Kitago, T. Wu, K. Miura, T. Kochiyama, N. Dang, D. Schoenberg for their help. The study was partly supported by a NINDS intramural competitive fellowship award (USA), a SUZUKEN Memorial Foundation, and a MEXT Grant-in-Aid for Scientific Research on Priority Areas—System Study on Higher-Order Brain Functions—#17022046 (Japan) to K.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Kansaku.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kansaku, K., Carver, B., Johnson, A. et al. The role of the human ventral premotor cortex in counting successive stimuli. Exp Brain Res 178, 339–350 (2007). https://doi.org/10.1007/s00221-006-0736-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0736-8

Keywords

Navigation