Skip to main content

Advertisement

Log in

Duration of the cue-to-pain delay increases pain intensity: a combined EEG and MEG study

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Expectation of pain is an important adaptive process enabling individuals to avoid bodily harm. It reflects the linking of past experience and environmental cues with imminent threat. In the present study, we examined changes in perceived pain contingent upon variation of the interval between an auditory cue and a subsequent painful laser stimulus. The duration of the cue-to-stimulus delay was systematically varied between 2, 4 and 6 s. Pain intensity and evoked brain responses measured by EEG and MEG recordings were analysed. Pain ratings from 15 subjects increased with longer cue-to-pain delays, accompanied by an increase in activity of the midcingulate cortex (MCC), as modelled from evoked EEG potential maps. On the other hand, MEG-based source activity in secondary somatosensory (SII) cortex remained unaffected by manipulation of the cue-to-stimulus interval. We conclude that activity in limbic structures such as MCC play a key role in the temporal dynamics of recruitment of expectation towards pain. Although this reaction is adaptive if the individual is able to avoid the stimulus, it is maladaptive if such opportunity is not present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Backes WH, Mess WH, van Kranen-Mastenbroek V, Reulen JP (2000) Somatosensory cortex responses to median nerve stimulation: fMRI effects of current amplitude and selective attention. Clin Neurophysiol 111:1738–1744

    Article  PubMed  CAS  Google Scholar 

  • Bantick SJ, Wise RG, Ploghaus A, Clare S, Smith SM, Tracey I (2002) Imaging how attention modulates pain in humans using functional MRI. Brain 125:310–319

    Article  PubMed  Google Scholar 

  • Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7:1129–1159

    PubMed  CAS  Google Scholar 

  • Bentley DE, Youell PD, Jones AK (2002) Anatomical localization and intra-subject reproducibility of laser evoked potential source in cingulate cortex, using a realistic head model. Clin Neurophysiol 113:1351–1356

    Article  PubMed  CAS  Google Scholar 

  • Bentley DE, Derbyshire SW, Youell PD, Jones AK (2003) Caudal cingulate cortex involvement in pain processing: an inter-individual laser evoked potential source localisation study using realistic head models. Pain 102:265–271

    Article  PubMed  Google Scholar 

  • Bingel U, Lorenz J, Glauche V, Knab R, Glascher J, Weiller C, Buchel C (2004) Somatotopic organization of human somatosensory cortices for pain: a single trial fMRI study. Neuroimage 23:224–232

    Article  PubMed  CAS  Google Scholar 

  • Bingel U, Lorenz J, Schoell E, Weiller C, Buchel C (2006) Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain 120:8–15

    Article  PubMed  CAS  Google Scholar 

  • Bromm B, Chen AC (1995) Brain electrical source analysis of laser evoked potentials in response to painful trigeminal nerve stimulation. Electroencephalogr Clin Neurophysiol 95:14–26

    Article  PubMed  CAS  Google Scholar 

  • Bromm B, Lorenz J (1998) Neurophysiological evaluation of pain. Electroencephalogr Clin Neurophysiol 107:227–253

    Article  PubMed  CAS  Google Scholar 

  • Bromm B, Scharein E, Vahle-Hinz C (2000) Cortex areas involved in the processing of normal and altered pain. Prog Brain Res 129:289–302

    Article  PubMed  CAS  Google Scholar 

  • Bush G, Vogt BA, Holmes J, Dale AM, Greve D, Jenike MA, Rosen BR (2002) Dorsal anterior cingulate cortex: a role in reward-based decision making. Proc Natl Acad Sci USA 99:523–528

    Article  PubMed  CAS  Google Scholar 

  • Coghill RC, Sang CN, Maisog JM, Iadarola MJ (1999) Pain intensity processing within the human brain: a bilateral, distributed mechanism. J Neurophysiol 82:1934–1943

    PubMed  CAS  Google Scholar 

  • Craig AD (2003) A new view of pain as a homeostatic emotion. Trends Neurosci 26:303–307

    Article  PubMed  CAS  Google Scholar 

  • Craig AD, Chen K, Bandy D, Reiman EM (2000) Thermosensory activation of insular cortex. Nat Neurosci 3:184–190

    Article  PubMed  CAS  Google Scholar 

  • Crombez G, Van Damme S, Eccleston C (2005) Hypervigilance to pain: an experimental and clinical analysis. Pain 116(1–2):4–7. Review

    Google Scholar 

  • Debener S, Makeig S, Delorme A, Engel AK (2005) What is novel in the novelty oddball paradigm? Functional significance of the novelty P3 event-related potential as revealed by independent component analysis. Brain Res Cogn Brain Res 22:309–321

    Article  PubMed  Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Met 134:9–21

    Article  Google Scholar 

  • Fuchs M, Drenckhahn R, Wischmann HA, Wagner M (1998) An improved boundary element method for realistic volume-conductor modeling. IEEE Trans Biomed Eng 45:980–997

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara N, Imai M, Nagamine T, Mima T, Oga T, Takeshita K, Toma K, Shibasaki H (2002) Second somatosensory area (SII) plays a significant role in selective somatosensory attention. Brain Res Cogn Brain Res 14:389–397

    Article  PubMed  Google Scholar 

  • Garcia-Larrea L, Peyron R, Laurent B, Mauguiere F (1997) Association and dissociation between laser-evoked potentials and pain perception. Neuroreport 8:3785–3789

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Larrea L, Frot M, Valeriani M (2003) Brain generators of laser-evoked potentials: from dipoles to functional significance. Neurophysiol Clin 33:279–292

    Article  PubMed  CAS  Google Scholar 

  • Hauck M, Bischoff P, Schmidt G, Zimmermann R, Lorenz J, Morrow TJ, Bromm B (2006) Clonidine effects on pain evoked SII activity in humans. Eur J Pain 10(8):757–765

    Google Scholar 

  • Hoechstetter K, Rupp A, Meinck HM, Weckesser D, Bornfleth H, Stippich C, Berg P, Scherg M (2000) Magnetic source imaging of tactile input shows task-independent attention effects in SII. Neuroreport 11:2461–2465

    Article  PubMed  CAS  Google Scholar 

  • Jung TP, Makeig S, Westerfield M, Townsend J, Courchesne E, Sejnowski TJ (2001) Analysis and visualization of single-trial event-related potentials. Hum Brain Mapp 14:166–185

    Article  PubMed  CAS  Google Scholar 

  • Kakigi R, Watanabe S, Yamasaki H, Maeda K (1999) Pain-related brain activities: magnetoencephalographic studies. Electroencephalogr Clin Neurophysiol Suppl 49:245–249

    PubMed  CAS  Google Scholar 

  • Kakigi R, Watanabe S, Yamasaki H (2000) Pain-related somatosensory evoked potentials. J Clin Neurophysiol 17:295–308

    Article  PubMed  CAS  Google Scholar 

  • Koyama T, McHaffie JG, Laurienti PJ, Coghill RC (2005) The subjective experience of pain: where expectations become reality. Proc Natl Acad Sci USA 102:12950–12955

    Article  PubMed  CAS  Google Scholar 

  • Legrain V, Guerit JM, Bruyer R, Plaghki L (2003). Electrophysiological correlates of attentional orientation in humans to strong intensity deviant nociceptive stimuli, inside and outside the focus of spatial attention. Neurosci Lett 20:339(2):107–110

    Google Scholar 

  • Lorenz J (1998) Hyperalgesia or hypervigilance? An evoked potential approach to the study of fibromyalgia syndrome. Z Rheumatol 57(Suppl 2):19–22

    Article  PubMed  Google Scholar 

  • Lorenz J, Garcia-Larrea L (2003) Contribution of attentional and cognitive factors to laser evoked brain potentials. Neurophysiol Clin 33:293–301

    Article  PubMed  Google Scholar 

  • Lorenz J, Hauck M, Paur RC, Nakamura Y, Zimmermann R, Bromm B, Engel AK (2005) Cortical correlates of false expectations during pain intensity judgments—a possible manifestation of placebo/nocebo cognitions. Brain Behav Immun 19:283–295

    Article  PubMed  Google Scholar 

  • Mauguiere F, Merlet I, Forss N, Vanni S, Jousmaki V, Adeleine P, Hari R (1997) Activation of a distributed somatosensory cortical network in the human brain. A dipole modelling study of magnetic fields evoked by median nerve stimulation. Part I: location and activation timing of SEF sources. Electroencephalogr Clin Neurophysiol 104:281–289

    Article  PubMed  CAS  Google Scholar 

  • Meftah el M, Shenasa J, Chapman CE (2002) Effects of a cross-modal manipulation of attention on somatosensory cortical neuronal responses to tactile stimuli in the monkey. J Neurophysiol 88:3133–3149

    Article  Google Scholar 

  • Melzack R, Casey KL (1967) Localized temperature changes evoked in the brain by somatic stimulation. Exp Neurol 17:276–292

    Article  PubMed  CAS  Google Scholar 

  • Mesulam MM, Nobre AC, Kim YH, Parrish TB, Gitelman DR (2001) Heterogeneity of cingulate contributions to spatial attention. Neuroimage 13:1065–1072

    Article  PubMed  CAS  Google Scholar 

  • Mima T, Nagamine T, Nakamura K, Shibasaki H (1998) Attention modulates both primary and second somatosensory cortical activities in humans: a magnetoencephalographic study. J Neurophysiol 80:2215–2221

    PubMed  CAS  Google Scholar 

  • Nakamura Y, Paur R, Zimmermann R, Bromm B (2002) Attentional modulation of human pain processing in the secondary somatosensory cortex: a magnetoencephalographic study. Neurosci Lett 328:29–32

    Article  PubMed  CAS  Google Scholar 

  • Ohara S, Crone NE, Weiss N, Lenz FA (2006) Analysis of synchrony demonstrates ‘pain networks’ defined by rapidly switching, task-specific, functional connectivity between pain-related cortical structures. Pain 123(3):244–253

    Google Scholar 

  • Petrovic P, Kalso E, Petersson KM, Ingvar M (2002) Placebo and opioid analgesia—imaging a shared neuronal network. Science 295:1737–1740

    Article  PubMed  CAS  Google Scholar 

  • Peyron R, Garcia-Larrea L, Gregoire MC, Costes N, Convers P, Lavenne F, Mauguiere F, Michel D, Laurent B (1999) Haemodynamic brain responses to acute pain in humans: sensory and attentional networks. Brain 122(Pt 9):1765–1780

    Article  PubMed  Google Scholar 

  • Peyron R, Garcia-Larrea L, Gregoire MC, Convers P, Richard A, Lavenne F, Barral FG, Mauguiere F, Michel D, Laurent B (2000) Parietal and cingulate processes in central pain. A combined positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) study of an unusual case. Pain 84:77–87

    Article  PubMed  CAS  Google Scholar 

  • Ploghaus A, Tracey I, Gati JS, Clare S, Menon RS, Matthews PM, Rawlins JN (1999) Dissociating pain from its anticipation in the human brain. Science 284:1979–1981

    Article  PubMed  CAS  Google Scholar 

  • Ploghaus A, Narain C, Beckmann CF, Clare S, Bantick S, Wise R, Matthews PM, Rawlins JN, Tracey I (2001) Exacerbation of pain by anxiety is associated with activity in a hippocampal network. J Neurosci 21:9896–9903

    PubMed  CAS  Google Scholar 

  • Ploner M, Schmitz F, Freund HJ, Schnitzler A (1999) Parallel activation of primary and secondary somatosensory cortices in human pain processing. J Neurophysiol 81:3100–3104

    PubMed  CAS  Google Scholar 

  • Porro CA, Baraldi P, Pagnoni G, Serafini M, Facchin P, Maieron M, Nichelli P (2002) Does anticipation of pain affect cortical nociceptive systems? J Neurosci 22:3206–3214

    PubMed  CAS  Google Scholar 

  • Sawamoto N, Honda M, Okada T, Hanakawa T, Kanda M, Fukuyama H, Konishi J, Shibasaki H (2000) Expectation of pain enhances responses to nonpainful somatosensory stimulation in the anterior cingulate cortex and parietal operculum/posterior insula: an event-related functional magnetic resonance imaging study. J Neurosci 20:7438–7445

    PubMed  CAS  Google Scholar 

  • Schnitzler A, Ploner M (2000) Neurophysiology and functional neuroanatomy of pain perception. J Clin Neurophysiol 17:592–603

    Article  PubMed  CAS  Google Scholar 

  • Singer T, Seymour B, O’Doherty J, Kaube H, Dolan RJ, Frith CD (2004) Empathy for pain involves the affective but not sensory components of pain. Science 303:1157–1162

    Article  PubMed  CAS  Google Scholar 

  • Spiegel J, Hansen C, Treede RD (1996) Laser-evoked potentials after painful hand and foot stimulation in humans: evidence for generation of the middle-latency component in the secondary somatosensory cortex. Neurosci Lett 216:179–182

    Article  PubMed  CAS  Google Scholar 

  • Steinmetz PN, Roy A, Fitzgerald PJ, Hsiao SS, Johnson KO, Niebur E (2000) Attention modulates synchronized neuronal firing in primate somatosensory cortex. Nature 404:187–190

    Article  PubMed  CAS  Google Scholar 

  • Talbot JD, Marrett S, Evans AC, Meyer E, Bushnell MC, Duncan GH (1991) Multiple representations of pain in human cerebral cortex. Science 251:1355–1358

    Article  PubMed  CAS  Google Scholar 

  • Tarkka IM, Treede RD (1993) Equivalent electrical source analysis of pain-related somatosensory evoked potentials elicited by a CO2 laser. J Clin Neurophysiol 10:513–519

    Article  PubMed  CAS  Google Scholar 

  • Timmermann L, Ploner M, Haucke K, Schmitz F, Baltissen R, Schnitzler A (2001) Differential coding of pain intensity in the human primary and secondary somatosensory cortex. J Neurophysiol 86:1499–1503

    PubMed  CAS  Google Scholar 

  • Treede RD, Kenshalo DR, Gracely RH, Jones AK (1999) The cortical representation of pain. Pain 79:105–111

    Article  PubMed  CAS  Google Scholar 

  • Treede RD, Apkarian AV, Bromm B, Greenspan JD, Lenz FA (2000) Cortical representation of pain: functional characterization of nociceptive areas near the lateral sulcus. Pain 87:113–119

    Article  PubMed  CAS  Google Scholar 

  • Treede RD, Lorenz J, Baumgartner U (2003) Clinical usefulness of laser-evoked potentials. Neurophysiol Clin 33:303–314

    Article  PubMed  Google Scholar 

  • Vogel H, Port JD, Lenz FA, Solaiyappan M, Krauss G, Treede RD (2003) Dipole source analysis of laser-evoked subdural potentials recorded from parasylvian cortex in humans. J Neurophysiol 89:3051–3060

    Article  PubMed  Google Scholar 

  • Vogt BA, Berger GR, Derbyshire SW (2003) Structural and functional dichotomy of human midcingulate cortex. Eur J Neurosci 18:3134–3144

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hauck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauck, M., Lorenz, J., Zimmermann, R. et al. Duration of the cue-to-pain delay increases pain intensity: a combined EEG and MEG study. Exp Brain Res 180, 205–215 (2007). https://doi.org/10.1007/s00221-007-0863-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-007-0863-x

Keywords

Navigation