Skip to main content
Log in

The relationship between poor sleep and inhibitory functions indicated by event-related potentials

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

An Erratum to this article was published on 02 April 2008

Abstract

The present study focused on the relationship between normal variations of sleep and inhibitory functions as reflected in event-related potentials. For this reason one night of 21 healthy participants was analysed. After waking up all participants completed a visual Go/Nogo task. On the basis of a sleep disturbance index (SDI) the participants were separated into 8 SDI-good and 13 SDI-poor sleepers using a cluster analysis. The results showed that Nogo-N2 amplitude was smaller and Nogo-P3 latency longer in SDI-poor sleepers. Moreover, Go-P3 amplitude was smaller in SDI-poor sleepers. Performance parameters were not influenced by poor sleep. We concluded that poor sleep specifically affects the intensity of pre-motor inhibitory processes (Nogo-N2 amplitude), the speed to inhibit a motor response (Nogo-P3 latency) and the intensity of task-relevant information processing (Go-P3 amplitude). In further studies, it should be explored under which conditions such subliminal deficits also become relevant for overt behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. In the present study “good” and “poor” is no rating of subjective sleep quality but a classification entirely based on objective measures. Nevertheless, in order to avoid misunderstandings, we used the terms “SDI-good” and “SDI-poor”.

References

  • Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends Cogn Sci 8:170–177

    Article  PubMed  Google Scholar 

  • Barcelo F, Perianez JA, Knight RT (2002) Think differently: a brain orienting response to task novelty. Neuroreport 13:1887–1892

    Article  PubMed  Google Scholar 

  • Bokura H, Yamaguchi S, Kobayashi S (2001) Electrophysiological correlates for response inhibition in a Go/Nogo task. Clin Neurophysiol 112:2224–2232

    Article  PubMed  CAS  Google Scholar 

  • Bokura H, Yamaguchi S, Kobayashi S (2005) Event-related potentials for response inhibition in Parkinson’s disease. Neuropsychologia 43:967–975

    Article  PubMed  Google Scholar 

  • Borgen FH, Barnett DC (1987) Applying cluster analysis in counseling psychology research. J Couns Psychol 34:456–468

    Article  Google Scholar 

  • Bruin KJ, Wijers AA, van Staveren ASJ (2001) Response priming in a go/nogo task: do we have to explain the go/nogo N2 effect in terms of response activation instead of inhibition? Clin Neurophysiol 112:1660–1671

    Article  PubMed  CAS  Google Scholar 

  • Burle B, Vidal F, Bonnet M (2004) Electroencephalographic nogo potentials in a no-movement context: the case of motor imagery in humans. Neurosci Lett 360:77–80

    Article  PubMed  CAS  Google Scholar 

  • Chee MWL, Choo WC (2004) Functional imaging of working memory after 24 hr of total sleep deprivation. J Neurosci 24:4560–4567

    Article  PubMed  CAS  Google Scholar 

  • Devoto A, Violani C, Lucidi F, Lombardo C (2003) P300 amplitude in subjects with primary insomnia is modulated by their sleep quality. J Psychosom Res 54:3–10

    Article  PubMed  Google Scholar 

  • Donchin E, Coles MGH (1988) Is the P300 component a manifestation of context updating? Behav Brain Sci 11:357–374

    Article  Google Scholar 

  • Donkers FCL, van Boxtel GJM (2004) The N2 in go/no-go tasks reflects conflict monitoring not response inhibition. Brain Cogn 56:165–176

    PubMed  Google Scholar 

  • Eimer M (1993) Effects of attention and stimulus probability on ERPs in a Go/Nogo task. Biol Psychol 35:123–138

    Article  PubMed  CAS  Google Scholar 

  • Falkenstein M (2006) Inhibition, conflict and the Nogo-N2. Clin Neurophysiol 117:1638–1640

    Article  PubMed  Google Scholar 

  • Falkenstein M, Hoormann J, Hohnsbein J (1999) ERP components in Go/Nogo tasks and their relation to inhibition. Acta Psychol 101:267–291

    Article  CAS  Google Scholar 

  • Falkenstein M, Hielscher H, Dziobek I, Schwarzenau P, Hoormann J, Sunderman B, Hohnsbein J (2001) Action monitoring, error detection, and the basal ganglia: an ERP study. Neuroreport 12:157–161

    Article  PubMed  CAS  Google Scholar 

  • Falkenstein M, Hoormann J, Hohnsbein J (2002) Inhibition-related ERP components: variation with modality, age and time-on-task. Int J Psychophysiol 16:167–175

    Article  Google Scholar 

  • Fallgatter AJ, Herrmann MJ, Hohoff C, Ehlis AC, Jarczok TA, Freitag CM, Deckert J (2006) DTNBP1 (Dysbindin) gene variants modulate prefrontal brain function in healthy individuals. Neuropsychopharmacology 31:2002–2010

    Article  PubMed  CAS  Google Scholar 

  • Friedman D, Cycowicz YM, Gaeta H (2001) The novelty P3: an event-related brain potential (ERP) sign of the brain’s evaluation of novelty. Neurosci Biobehav Rev 25:355–373

    Article  PubMed  CAS  Google Scholar 

  • Gamma A, Brandeis D, Brandeis R, Vollenweider FX (2005) The P3 in ‘ecstasy’ polydrug users during response inhibition and execution. J Psychopharmacol 19:504–512

    Article  PubMed  Google Scholar 

  • Garavan H, Ross TJ, Murphy K, Roche RAP, Stein EA (2002) Dissociable executive functions in the dynamic control of behavior: inhibition, error detection, and correction. Neuroimage 17:820–1829

    Article  Google Scholar 

  • Gosselin A, De Koninck J, Campbell KB (2005) Total sleep deprivation and novelty processing: implications for frontal lobe functioning. Clin Neurophysiol 16:211–222

    Article  Google Scholar 

  • Gratton G, Coles MGH, Donchin E (1983) A new method for off-line removal of ocular artifact. Electroencephalogr Clin Neurophysiol 55:468–484

    Article  PubMed  CAS  Google Scholar 

  • Griefahn B (1985) Schlafverhalten und Geräusche: Feld- und Laboruntersuchungen über Strassenverkehr, EEG-Analyse, Literaturauswertung. Ferdinand Enke Stuttgart

  • Griefahn B, Marks A, Robens S (2006) Noise emitted from road, rail and air traffic and their effects on sleep. J Sound Vibration 295:129–140

    Article  Google Scholar 

  • Harrison Y, Horne JA (2000) The impact of sleep deprivation on decision making: a review. J Exp Psychol Appl 6:236–249

    Article  PubMed  CAS  Google Scholar 

  • Hoffman JE (1990) Event-related potentials and automatic and controlled processes. In: Rohrbaugh JW, Parasuraman R, Johnson R Jr (eds) Event-related brain potentials. Oxford University Press, New York, pp 147–157

    Google Scholar 

  • Horne JA (1993) Human sleep, sleep loss and behaviour: implications for the prefrontal cortex and psychiatric disorder. Br J Psychiatry 162:413–419

    PubMed  CAS  Google Scholar 

  • Humphrey DG, Kramer AF, Stanny RR (1994) Influence of extended wakefulness on automatic and nonautomatic processing. Hum Factors 36:652–669

    PubMed  Google Scholar 

  • Jodo E, Kayama Y (1992) Relation of a negative ERP component to response inhibition in a Go/No-go task. Electroencephalogr Clin Neurophysiol 82:477–482

    Article  PubMed  CAS  Google Scholar 

  • Jones K, Harrison Y (2001) Frontal lobe function, sleep loss and fragmented sleep. Sleep Med Rev 5:463–475

    Article  PubMed  Google Scholar 

  • Kawada T, Suzuki S, Aoki S, Ogawa M (1993) Relationship between subjective sleep rating and objective sleep parameters: a case study. Environ Res 60:136–144

    Article  PubMed  CAS  Google Scholar 

  • Kiefer M, Marzinzik F, Weisbrod M, Scherg M, Spitzer M (1998) The time course of brain activations during response inhibition: evidence from event-related potentials in a go/no go task. Neuroreport 9:765–770

    Article  PubMed  CAS  Google Scholar 

  • Kok A (1997) Event-related potential (ERP) reflections of mental resources: a review and synthesis. Biol Psychol 45:19–56

    Article  PubMed  CAS  Google Scholar 

  • Kok A (2001) On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology 38:557–577

    Article  PubMed  CAS  Google Scholar 

  • Kopp B, Mattler U, Goertz R, Rist F (1996) N2, P3 and the lateralized readiness potential in a nogo task involving selective response priming. Electroencephalogr Clin Neurophysiol 99:19–27

    PubMed  CAS  Google Scholar 

  • Liotti M, Pliszka SR, Perez R, Kothmann D, Woldorff MG (2005) Abnormal brain activity related to performance monitoring and error detection in children with ADHD. Cortex 41:377–388

    Article  PubMed  Google Scholar 

  • Luria AR (1973) The working brain––an introduction to neuropsychology. Basic Books Inc., New York

    Google Scholar 

  • Marks A, Griefahn B (2005) Railway noise––its effect on sleep, mood, subjective sleep quality, and performance. Somnologie 9:68–75

    Article  Google Scholar 

  • Matousek M, Cervena K, Zavesicka L, Brunovsky M (2004) Subjective and objective evaluation of alertness and sleep quality in depressed patients. BMC Psychiatry 4:14

    Article  PubMed  Google Scholar 

  • Morris AM, So Y, Lee KA, Lash AA, Becker CE (1992) The P300 event-related potential––the effects of sleep deprivation. J Occup Med 34:1143–1152

    PubMed  CAS  Google Scholar 

  • Muzur A, Pace-Schott EF, Hobson JA (2002) The prefrontal cortex in sleep. Trends Cogn Sci 6:475–481

    Article  PubMed  Google Scholar 

  • Nieuwenhuis S, Yeung N, van den Wildenberg W, Ridderinkhof KR (2003) Electrophysiological correlates of anterior cingulate function in a go/no-go task: effects of response conflict in trial type frequency. Cogn Affect Behav Neurosci 3:17–26

    PubMed  Google Scholar 

  • Polich J, Herbst KL (2000) P300 as a clinical assay: rationale, evaluation, and findings. Int J Psychophysiol 38:3–19

    Article  PubMed  CAS  Google Scholar 

  • Pfefferbaum A, Ford JM (1988) ERPs to stimuli requiring response production and inhibition: effects of age, probability and visual noise. Electroencephal Clin Neurophysiol 71:55–63

    Article  CAS  Google Scholar 

  • Rabbitt P (1997) Methodologies and models in the study of executive function. In: Rabbitt P (ed) Methodology of frontal and executive function. Psychology Press, East Sussex, pp 1–38

    Google Scholar 

  • Rechtschaffen A, Kales A (1968) A manual of standardized terminology, techniques and scoring system for sleep stages in human subjects. Public Health Service, US Government Printing Office, Washington DC

    Google Scholar 

  • Ritter W, Simson R, Vaughan HG Jr, Friedman D (1979) A brain event related to the making of a sensory discrimination. Science 203:1358–1361

    Article  PubMed  CAS  Google Scholar 

  • Sadeh A, Acebo C (2002) The role of actigraphy in sleep medicine. Sleep Med Rev 6:113–124

    Article  PubMed  Google Scholar 

  • Salmi J, Huotilainen M, Pakarinen S, Siren T, Alho K, Aronen ET (2005) Does sleep quality affect involuntary attention switching system? Neurosci Lett 390:150–155

    Article  PubMed  CAS  Google Scholar 

  • Schapkin SA, Falkenstein M, Marks A, Griefahn B (2006a) Executive brain functions after exposure to nocturnal traffic noise: effects of task difficulty and sleep quality. Eur J Appl Physiol 96:693–702

    Article  PubMed  Google Scholar 

  • Schapkin SA, Falkenstein M, Marks A, Griefahn B (2006b) After effects of noise-induced sleep disturbances on inhibitory functions. Life Sci 78:1135–1142

    Article  PubMed  CAS  Google Scholar 

  • Smith JL, Jonstone SJ, Barry RJ (2007) Response priming in the Go/Nogo task: the N2 reflects neither inhibition nor conflict. Clin Neurophysiol 118:343–355

    Article  PubMed  Google Scholar 

  • Taroyan NA, Nicolson RI, Fawcett AJ (2007) Behavioural and neurophysiological correlates of dyslexia in the continuous performance task. Clin Neurophysiol 118:845–855

    Article  PubMed  CAS  Google Scholar 

  • Tekok-Kilic A, Shucard JL, Shucard DW (2001) Stimulus modality and Go/Nogo effects on P3 during parallel visual and auditory continuous performance tasks. Psychophysiology 38:578–589

    Article  PubMed  CAS  Google Scholar 

  • Verleger R (1997) On the utility of P3 latency as an index of mental chronometry. Psychophysiology 34:131–156

    Article  PubMed  CAS  Google Scholar 

  • Verleger R, Jaśkowski P, Wascher E (2005) Evidence for an integrative role of P3b in linking reaction to perception. J Psychophysiol 19:165–181

    Article  Google Scholar 

  • Woodward SH, Bliwise DL, Friedman MJ, Gusman DF (1996) Subjective versus objective sleep in Vietnam combat veterans hospitalized for PTSD. J Trauma Stress 9:137–143

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Virtual Institute “Transportation Noise–Effects on Sleep and Performance” of the Helmholtz Gemeinschaft (HGF) under the grant-no VH-VI-111.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Griefahn.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00221-008-1354-4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breimhorst, M., Falkenstein, M., Marks, A. et al. The relationship between poor sleep and inhibitory functions indicated by event-related potentials. Exp Brain Res 187, 631–639 (2008). https://doi.org/10.1007/s00221-008-1333-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1333-9

Keywords

Navigation