Skip to main content
Log in

Manual matching of perceived surface orientation is affected by arm posture: evidence of calibration between proprioception and visual experience in near space

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Proprioception of hand orientation (orientation production using the hand) is compared with manual matching of visual orientation (visual surface matching using the hand) in two experiments. In experiment 1, using self-selected arm postures, the proportions of wrist and elbow flexion spontaneously used to orient the pitch of the hand (20 and 80%, respectively) are relatively similar across both manual matching tasks and manual orientation production tasks for most participants. Proprioceptive error closely matched perceptual biases previously reported for visual orientation perception, suggesting calibration of proprioception to visual biases. A minority of participants, who attempted to use primarily wrist flexion while holding the forearm horizontal, performed poorly at the manual matching task, consistent with proprioceptive error caused by biomechanical constraints of their self-selected posture. In experiment 2, postural choices were constrained to primarily wrist or elbow flexion without imposing biomechanical constraints (using a raised forearm). Identical relative offsets were found between the two constraint groups in manual matching and manual orientation production. The results support two claims: (1) manual orientation matching to visual surfaces is based on manual proprioception and (2) calibration between visual and proprioceptive experiences guarantees relatively accurate manual matching for surfaces within reach, despite systematic visual biases in perceived surface orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bingham GP, Pagano CC (1998) The necessity of a perception-action approach to definite distance perception: Monocular distance perception to guide reaching. J Exp Psychol Human 24:145–168

    Article  CAS  Google Scholar 

  • Bingham GP, Zall F, Robin D, Shull JA (2000) Distortions in definite distance and shape perception as measured by reaching with and without haptic feedback. J Exp Psychol Human 26:1436–1460

    Article  CAS  Google Scholar 

  • Bridgeman B, Hoover M (2008) Processing spatial layout by perception and sensorimotor interaction. Q J Exp Psychol 61:851–859

    Article  Google Scholar 

  • Cruse H (1986) Constraints for joint angle control of the human arm. Biol Cybern 54:125–132

    Article  Google Scholar 

  • Cruse H, Bruwer M (1987) The human arm as a redundant manipulator: the control of path and joint angles. Biol Cybern 57:137–144

    Article  PubMed  CAS  Google Scholar 

  • Darling WG (1991) Perception of forearm angles in 3-dimensional space. Exp Brain Res 87:445–456

    Article  PubMed  CAS  Google Scholar 

  • Dassonville P, Bridgeman B, Bala JK, Thiem P, Sampanes A (2004) The induced Roelofs effect: two visual systems or the shift of a single reference frame? Vision Res 44:603–611

    Article  PubMed  Google Scholar 

  • Dick M, Hochstein S (1989) Visual orientation estimation. Percept Psychophys 46:227–234

    Article  PubMed  CAS  Google Scholar 

  • Durgin FH (2009) When walking makes perception better. Curr Dir Psychol Sci 18:43–47

    Article  Google Scholar 

  • Durgin FH, Li Z (2011a) The perception of 2D orientation is categorically biased. J Vis 11(8):13 (1–10)

    Google Scholar 

  • Durgin FH, Li Z (2011b) Perceptual scale expansion: an efficient angular coding strategy for locomotor space. Atten Percept Psychophys 73:1856–1870

    Article  PubMed  Google Scholar 

  • Durgin FH, Li Z (in press) Spatial biases and the haptic experience of surface orientation. In El Saddik A (ed) Haptics. InTech

  • Durgin FH, Hajnal A, Li Z, Tonge N, Stigliani A (2010a) Palm boards are not action measures: an alternative to the two-systems theory of geographical slant perception. Acta Psychol 134:182–197

    Article  Google Scholar 

  • Durgin FH, Li Z, Hajnal A (2010b) Slant perception in near space is categorically biased: evidence for a vertical tendency. Atten Percept Psychophys 72:1875–1889

    Article  PubMed  Google Scholar 

  • Durgin FH, Hajnal A, Li Z, Tonge N, Stigliani A (2011) An imputed dissociation might be an artifact: further evidence for the generalizability of the observations of Durgin et al. 2010. Acta Psychol 138:281–284

    Article  Google Scholar 

  • Fisher GH (1968) The frameworks for perceptual localization. Technical report No. 70/GEN/9617, University of Newcastle upon Tyne

  • Flanders M, Soechting JF (1995) Frames of reference for hand orientation. J Cogn Neurosci 7:182–195

    Article  Google Scholar 

  • Fuentes CT, Bastian AJ (2010) Where is your arm? Variations in proprioception across space and tasks. J Neurophysiol 103:164–171

    Article  PubMed  Google Scholar 

  • Gentaz E, Baud-Bovy G, Luyat M (2008) The haptic perception of spatial orientations. Exp Brain Res 187:331–348

    Article  PubMed  Google Scholar 

  • Gibson JJ (1979) The ecological approach to visual perception. Houghton Mifflin, Boston

    Google Scholar 

  • Gibson JJ, Cornsweet J (1952) The perceived slant of visual surfaces-optical and geographical. J Exp Psychol 44:11–15

    Article  PubMed  CAS  Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25

    Article  PubMed  CAS  Google Scholar 

  • Haffenden AM, Goodale MA (1998) The effect of pictorial illusion on prehension and perception. J Cogn Neurosci 10:122–136

    Article  PubMed  CAS  Google Scholar 

  • Hajnal A, Abdul-Malak DT, Durgin FH (2011) The perceptual experience of slope by foot and by finger. J Exp Psychol Human 37:709–719

    Article  Google Scholar 

  • Harris CS (1963) Adaptation to displaced vision: visual, motor, or proprioceptive change? Science 140:812–813

    Article  PubMed  CAS  Google Scholar 

  • Held R, Freedman SJ (1965) Plasticity in human sensorimotor control. Science 142:455–462

    Article  Google Scholar 

  • Howe CQ, Purves D (2005a) Natural-scene geometry predicts the perception of angles and line orientation. Proc Natl Acad Sci USA 102:1228–1233

    Article  PubMed  CAS  Google Scholar 

  • Howe CQ, Purves D (2005b) The Muller-Lyer illusion explained by the statistics of image-source relationships. Proc Natl Acad Sci USA 102:1234–1239

    Article  PubMed  CAS  Google Scholar 

  • Howe CQ, Lotto RB, Purves D (2006) Comparison of Bayesian and empirical ranking approaches to visual perception. J Theor Biol 241:866–875

    Article  PubMed  Google Scholar 

  • Jastrow J (1892) Studies from the University of Wisconsin: on the judgment of angles and the position of lines. Am J Psychol 5:214–248

    Article  Google Scholar 

  • Jeannerod M (1988) The neural and behavioural organization of goal directed movements. Oxford University Press, Oxford, p 283

    Google Scholar 

  • Kappers AML (1999) Large systematic deviations in the haptic perception of parallelity. Perception 28:1001–1012

    Article  PubMed  CAS  Google Scholar 

  • Lackner JR, DiZio PA (2000) Aspects of body self-calibration. Trends Cogn Sci 4:279–288

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Durgin FH (2009) Downhill slopes look shallower from the edge. J Vis 9(11):6 (1–15)

    Google Scholar 

  • Li Z, Durgin FH (2010) Perceived slant of binocularly viewed large-scale surfaces: a common model from explicit and implicit measures. J Vis 10(14):13 (1–16)

    Google Scholar 

  • Li Z, Durgin FH (2011) Design, data and theory regarding a digital hand inclinometer: a portable device for studying slant perception. Behav Res Methods 43:363–371

    Article  PubMed  Google Scholar 

  • Li Z, Phillips J, Durgin FH (2011) The underestimation of egocentric distance: evidence from frontal matching tasks. Atten Percept Psychophys 73:2205–2217

    Article  PubMed  Google Scholar 

  • Loomis JM, Da Silva JA, Fujita N, Fukusima SS (1992) Visual space perception and visually guided action. J Exp Psychol Human 18:906–921

    Article  CAS  Google Scholar 

  • McIntyre J, Lipshits M (2008) Central processes amplify and transform anisotropies of the visual system in a test of visual-haptic coordination. J Neurosci 28:1246–1261

    Article  PubMed  CAS  Google Scholar 

  • Milner AD, Goodale MA (1995) The visual brain in action. Oxford University Press, Oxford

    Google Scholar 

  • Norman JF, Todd JT, Phillips F (1995) The perception of surface orientation from multiple sources of optical information. Percept Psychophys 57:629–636

    Article  PubMed  CAS  Google Scholar 

  • Norman JF, Crabtree CE, Bartholomew AN, Ferrell EL (2009) Aging and the perception of slant from optical texture, motion parallax, and binocular disparity. Atten Percept Psychophys 71:116–130

    PubMed  Google Scholar 

  • Powers WT (1973) Behavior: the control of perception. Aldine, Chicago

    Google Scholar 

  • Proffitt DR, Bhalla M, Gossweiler R, Midgett J (1995) Perceiving geographical slant. Psychon B Rev 2:409–428

    Article  Google Scholar 

  • Rieser JJ, Ashmead DA, Taylor C, Youngquist G (1990) Visual perception and the guidance of locomotion without vision to previously seen targets. Perception 19:675–689

    Article  PubMed  CAS  Google Scholar 

  • Rosenbaum DA, Loukopoulos LD, Meulenbroek RG, Vaughan J, Engelbrecht SE (1995) Planning reaches by evaluating stored postures. Psychol Rev 102:28–67

    Article  PubMed  CAS  Google Scholar 

  • Rossetti Y, Meckler C, Prablanc C (1994) Is there an optimal arm posture? Deterioration of finger localization precision and comfort sensation in extreme arm-joint postures. Exp Brain Res 99:131–136

    Article  PubMed  CAS  Google Scholar 

  • Schot WD, Brenner E, Smeets JB (2010) Posture of the arm when grasping spheres to place them elsewhere. Exp Brain Res 204:163–171

    Article  PubMed  Google Scholar 

  • Sedgwick HA (1986) Space perception. In: Boff KR, Kaufman L, Thomas JP (eds) Handbook of perception and human performance. Wiley, New York, pp 21.1–21.57

  • Smeets JB, Van den Dobbelsteen JJ, De Grave DD, Van Beers RJ, Brenner E (2006) Sensory integration does not lead to sensory calibration. Proc Nat Acad Sci USA 103:18781–18786

    Article  PubMed  CAS  Google Scholar 

  • Soechting JF, Buneo CA, Herrmann U, Flanders M (1995) Moving effortlessly in three dimensions: does Donders’ law apply to arm movement? J Neurosci 15:6271–6280

    PubMed  CAS  Google Scholar 

  • Todd JT, Thaler L, Dijkstra TM (2005) The effects of field of view on the perception of 3D slant from texture. Vision Res 45:1501–1517

    Article  PubMed  Google Scholar 

  • van Beers RJ, Sittig AC, Denier van der Gon JJ (1998) The precision of proprioceptive position sense. Exp Brain Res 122:367–377

    Article  PubMed  Google Scholar 

  • Von Helmholtz H (1867) Handbuch der physiologischen Optik, vol 1. Voss, Lelpzig, pp 601–602

  • Wang X (1999) Three-dimensional kinematic analysis of influence of hand orientation and joint limits on the control of arm postures and movements. Biol Cybern 80:449–463

    Article  PubMed  CAS  Google Scholar 

  • Wilson ET, Wong J, Gribble PL (2010) Mapping proprioception across a 2D horizontal workspace. PLoS ONE 5(7):e11851

    Article  PubMed  Google Scholar 

  • Wundt W (1862) Beiträge zur Theorie der Sinneswahrnehmung. Winter’sche Verlagshandlung, Leipzig

    Google Scholar 

Download references

Acknowledgments

This research was supported by Award Number R15 EY021026-01 from the National Eye Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Eye Institute or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank H. Durgin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Durgin, F.H. Manual matching of perceived surface orientation is affected by arm posture: evidence of calibration between proprioception and visual experience in near space. Exp Brain Res 216, 299–309 (2012). https://doi.org/10.1007/s00221-011-2934-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2934-2

Keywords

Navigation