Skip to main content
Log in

Evidence for vestibular dysfunction in orthostatic hypotension

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

There is little definitive evidence of the clinical significance of the vestibular-cardiovascular reflex in humans, despite the fact that the vestibular system is known to contribute to cardiovascular control in animals. The present study involved 248 dizzy patients (127 male patients and 121 female patients) aged 65 years and younger. We classified all participants into three groups based on their vestibular evoked myogenic potential (VEMP) responses; absent VEMP, asymmetry VEMP and normal VEMP. To investigate the effect of the otolith disorder, which was estimated by the VEMP, on the orthostatic blood pressure responses, the subjects’ systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate were monitored during the orthostatic test after they actively stood up. The male patients in the absent VEMP group had a significant drop in their DBP at 1 min after active standing up (P < 0.05) without any change in their SBP. Conversely, male patients in the asymmetry VEMP and normal VEMP groups showed a significant increase in the SBP at 1 min after active standing up (P < 0.05). Female patients in the absent VEMP group did not show any significant drop in their blood pressure after standing up (P > 0.05). In the entire group of participants, a total of 19.6% of the patients in the absent VEMP group fulfilled the criteria for orthostatic hypotension (OH), which was significantly > the 8.6% of patients in the normal VEMP group and the 7.2% in the asymmetry VEMP group (P < 0.05). Our results suggest that vestibular disorders due to the dysfunction of otolith organs provoke OH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aoki M, Burchill P, Yates B, Golding JF, Gresty MA (2000) Graviceptive control of blood pressure in man. Arch Ital Biol 138:93–97

    PubMed  CAS  Google Scholar 

  • Colebatch JG, Halmagyi GM, Skuse NF (1994) Myogenic potentials generated by a click-evoked vestibulocollic reflex. J Neurol Neurosurg Psychiatry 57:190–197

    Article  PubMed  CAS  Google Scholar 

  • Convertino VA (1998) Gender differences in autonomic functions associated with blood pressure regulation. Am J Physiol 275:R1909–R1920

    PubMed  CAS  Google Scholar 

  • Doba N, Reis DJ (1974) Role of the cerebellum and the vestibular apparatus in regulation of orthostatic reflexes in the cat. Circ Res 40:9–18

    PubMed  CAS  Google Scholar 

  • Dunne FP, Barry DG, Ferriss JB, Grealy G, Murphy D (1991) Changes in blood pressure during the normal menstrual cycle. Clin Sci (Lond) 81:515–518

    CAS  Google Scholar 

  • Essandoh LK, Duprez DA, Shepherd JT (1988) Reflex constriction of human limb resistance vessels to head-down neck flexion. J Appl Physiol 64:767–770

    PubMed  CAS  Google Scholar 

  • Freeman R, Wieling W, Axelrod FB, Benditt DG, Benarroch E, Biaggioni I, Cheshire WP, Chelimsky T, Cortelli P, Gibbons CH, Goldstein DS, Hainsworth R, Hilz MJ, Jacob G, Kaufmann H, Jordan J, Lipsitz LA, Levine BD, Low PA, Mathias C, Raj SR, Robertson D, Sandroni P, Schatz IJ, Schondorf R, Stewart JM, van Dijk JG (2011) Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Auton Neurosci 161:46–48

    Article  PubMed  Google Scholar 

  • Friedmann G (1970) The judgement of the visual vertical and horizontal with peripheral and central vestibular lesions. Brain 93:313–328

    Article  PubMed  CAS  Google Scholar 

  • Gotshall RW (2000) Gender differences in tolerance to lower body negative pressure. Aviat Space Environ Med 71:1104–1110

    PubMed  CAS  Google Scholar 

  • Gotshall RW, Tsai PF, Frey MA (1991) Gender-based differences in the cardiovascular response to standing. Aviat Space Environ Med 62:855–859

    PubMed  CAS  Google Scholar 

  • Gresty MA, Bronstein AM, Brandt T, Dieterich M (1992) Neurology of otolith function: peripheral and central disorders. Brain 115(Pt 3):647–673

    Article  PubMed  Google Scholar 

  • Hafstrom A, Fransson PA, Karlberg M, Magnusson M (2004) Idiosyncratic compensation of the subjective visual horizontal and vertical in 60 patients after unilateral vestibular deafferentation. Acta Otolaryngol 124:165–171

    Article  PubMed  Google Scholar 

  • Hordinsky JR, Gebhardt U, Wegmann HM, Schafer G (1981) Cardiovascular and biochemical response to simulated space flight entry. Aviat Space Environ Med 52:16–18

    PubMed  CAS  Google Scholar 

  • Jacobson GP, Newman CW (1990) The development of the dizziness handicap inventory. Arch Otolaryngol Head Neck Surg 116:424–427

    Article  PubMed  CAS  Google Scholar 

  • Jian BJ, Cotter LA, Emanuel BA, Cass SP, Yates BJ (1999) Effects of bilateral vestibular lesions on orthostatic tolerance in awake cats. J Appl Physiol 86:1552–1560

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann H, Biaggioni I, Voustianiouk A, Diedrich A, Costa F, Clarke R, Gizzi M, Raphan T, Cohen B (2002) Vestibular control of sympathetic activity: an otolith-sympathetic reflex in humans. Exp Brain Res 143:463–469

    Article  PubMed  CAS  Google Scholar 

  • Lee IS, Park HJ, Shin JE, Jeong YS, Kwak HB, Lee YJ (2009) Results of air caloric and other vestibular tests in patients with chronic otitis media. Clin Exp Otorhinolaryngol 2:145–150

    Article  PubMed  Google Scholar 

  • Normand H, Etard O, Denise P (1997) Otolithic and tonic neck receptors control of limb blood flow in humans. J Appl Physiol 82:1734–1738

    PubMed  CAS  Google Scholar 

  • Ray CA (2000) Effect of gender on vestibular sympathoexcitation. Am J Physiol Regul Integr Comp Physiol 279:R1330–R1333

    PubMed  CAS  Google Scholar 

  • Ray CA, Carter JR (2003) Vestibular activation of sympathetic nerve activity. Acta Physiol Scand 177:313–319

    Article  PubMed  CAS  Google Scholar 

  • Ray CA, Hume KM (1998) Neck afferents and muscle sympathetic activity in humans: implications for the vestibulosympathetic reflex. J Appl Physiol 84:450–453

    PubMed  CAS  Google Scholar 

  • Ray CA, Monahan KD (2002) Aging attenuates the vestibulosympathetic reflex in humans. Circulation 105:956–961

    Article  PubMed  Google Scholar 

  • Rutan GH, Hermanson B, Bild DE, Kittner SJ, LaBaw F, Tell GS (1992) Orthostatic hypotension in older adults: the cardiovascular health study—CHS collaborative research group. Hypertension 19:508–519

    PubMed  CAS  Google Scholar 

  • Su HC, Huang TW, Young YH, Cheng PW (2004) Aging effect on vestibular evoked myogenic potential. Otol Neurotol 25:977–980

    Article  PubMed  Google Scholar 

  • Tanaka K, Abe C, Awazu C, Morita H (2009) Vestibular system plays a significant role in arterial pressure control during head-up tilt in young subjects. Auton Neurosci 148:90–96

    Article  PubMed  Google Scholar 

  • Vibert D, Hausler R, Safran AB (1999) Subjective visual vertical in peripheral unilateral vestibular diseases. J Vestib Res 9:145–152

    PubMed  CAS  Google Scholar 

  • Welgampola MS, Colebatch JG (2005) Characteristics and clinical applications of vestibular-evoked myogenic potentials. Neurology 64:1682–1688

    Article  PubMed  Google Scholar 

  • Wieling W, Lieshout JJ (1997) Maintenance of postural normotension in humans. In: Low P (ed) Clinical autonomic disorders, 2nd edn. Lippincott-Raven, Philadelphia, pp 73–82

  • Wieling W, Krediet CT, van Dijk N, Linzer M, Tschakovsky ME (2007) Initial orthostatic hypotension: review of a forgotten condition. Clin Sci (Lond) 112:157–165

    Article  Google Scholar 

  • Woodring SF, Rossiter CD, Yates BJ (1997) Pressor response elicited by nose-up vestibular stimulation in cats. Exp Brain Res 113:165–168

    Article  PubMed  CAS  Google Scholar 

  • Yates BJ (1992) Vestibular influences on the sympathetic nervous system. Brain Res Rev 17:51–59

    Article  PubMed  CAS  Google Scholar 

  • Yates BJ, Miller AD (1994) Properties of sympathetic reflexes elicited by natural vestibular stimulation: implications for cardiovascular control. J Neurophysiol 71:2087–2092

    PubMed  CAS  Google Scholar 

  • Yates BJ, Aoki M, Burchill P, Bronstein AM, Gresty MA (1999) Cardiovascular responses elicited by linear acceleration in humans. Exp Brain Res 125:476–484

    Article  PubMed  CAS  Google Scholar 

  • Yates BJ, Holmes MJ, Jian BJ (2000) Adaptive plasticity in vestibular influences on cardiovascular control. Brain Res Bull 53:3–9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants-in-aid for scientific research from the Japan society for the promotion of science, a grant from the intractable diseases fund (vestibular disorders) of the Ministry of Health and Welfare, Japan and a grant-in-aid from Gifu University School of Medicine for the promotion of science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiro Aoki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aoki, M., Sakaida, Y., Tanaka, K. et al. Evidence for vestibular dysfunction in orthostatic hypotension. Exp Brain Res 217, 251–259 (2012). https://doi.org/10.1007/s00221-011-2989-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2989-0

Keywords

Navigation