Skip to main content
Log in

A right hemisphere dominance for bimanual grasps

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

To find points on the surface of an object that ensure a stable grasp, it would be most effective to employ one area in one cortical hemisphere. But grasping the object with both hands requires control through both hemispheres. To better understand the control mechanisms underlying this “bimanual grasping”, here we examined how the two hemispheres coordinate their control processes for bimanual grasping depending on visual field. We asked if bimanual grasping involves both visual fields equally or one more than the other. To test this, participants fixated either to the left or right of an object and then grasped or pushed it off a pedestal. We found that when participants grasped the object in the right visual field, maximum grip aperture (MGA) was larger and more variable, and participants were slower to react and to show MGA compared to when they grasped the object in the left visual field. In contrast, when participants pushed the object we observed no comparable visual field effects. These results suggest that grasping with both hands, specifically the computation of grasp points on the object, predominantly involves the right hemisphere. Our study provides new insights into the interactions of the two hemispheres for grasping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baas U, de Haan B, Grassli T, Karnath H-O, Mueri R, Perrig WJ, Wurtz P, Gutbrod K (2011) Personal neglect—a disorder of body representation? Neuropsychologia 49:898–905

    Article  PubMed  Google Scholar 

  • Begliomini C, Wall MB, Smith AT, Castiello U (2007) Differential cortical activity for precision and whole-hand visually guided grasping in humans. Eur J Neurosci 25:1245–1252

    Article  PubMed  Google Scholar 

  • Binkofski F, Buccino G (2006) The role of ventral premotor cortex in action execution and action understanding. J Physiol (Paris) 99:396–406

    Article  Google Scholar 

  • Binkofski F, Dohle C, Phil M, Posse S, Stephan KM, Hefter H, Seitz J, Freund HJ (1998) Human anterior intraparietal areas subserves prehension: a combined lesion and functional MRI activation study. Neurology 50:1253–1259

    Article  PubMed  CAS  Google Scholar 

  • Blake A (1992) Computational modelling of hand-eye coordination. Philos Trans R Soc London [Biol] 337:351–360

    Article  Google Scholar 

  • Blake A, Taylor M, Cox, A (1993) Grasping visual symmetry. In: Proceedings of the fourth international conference on computer vision. International conference on computer vision, Berlin

  • Blanke O, Ortigue S, Landis T, Seeck M (2002) Stimulating illusory own-body perceptions. Nature 419:269–270

    Article  PubMed  CAS  Google Scholar 

  • Brainard DH (1997) The psychophysics toolbox. Spatial Vis 10:433–436

    Article  CAS  Google Scholar 

  • Brinkman J, Kuypers MGJM (1972) Split-brain monkeys: cerebral control of ipsilateral arm, hand, and finger movements. Science 176:536–539

    Article  PubMed  CAS  Google Scholar 

  • Castiello U (2005) The neuroscience of grasping. Nat Rev Neurosci 6:726–736

    Article  PubMed  CAS  Google Scholar 

  • Castiello U, Bennett KMB, Stelmach GE (1993) The bilateral reach to grasp movement. Behav Brain Res 56:43–57

    Article  PubMed  CAS  Google Scholar 

  • Corbetta D, Thelen E (1996) The developmental origins of bimanual coordination: a dynamic perspective. J Exp Psychol Hum Percept Perform 22:502–522

    Article  PubMed  CAS  Google Scholar 

  • Cornelissen FW, Peters EM, Palmer J (2002) The Eyelink toolbox: eye tracking with MATLAB and the psychophysic toolbox. Behav Res Meth Ins C 34:613–617

    Article  Google Scholar 

  • Culham JC, Valyear KF (2006) Human parietal cortex in action. Curr Opin Neurobiol 16:205–212

    Article  PubMed  CAS  Google Scholar 

  • Culham J, Danckert SL, DeSouza JFX, Gati JS, Menen RS, Goodale MA (2003) Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Exp Brain Res 153:180–189

    Article  PubMed  Google Scholar 

  • Davare M, Andres M, Clerget E, Thonnard J-L, Olivier E (2007) Temporal dissociation between hand shaping and grip force scaling in the anterior intraparietal area. J Neurosci 27:3974–3980

    Article  PubMed  CAS  Google Scholar 

  • Devinsky O, D’Esposito M (2003) Neurology of Cognitive and Behavioural Disorders. Oxford University Press, New York

    Google Scholar 

  • Dohle C, Ostermann G, Hefter H, Freund H-J (2000) Different coupling for the reach and grasp components in bimanual prehension movements. NeuroReport 11:3787–3791

    Article  PubMed  CAS  Google Scholar 

  • Duque J, Davare M, Delaunay L, Jacob B, Saur R, Hummel F, Hemoye L, Rossion B, Olivier E (2009) Monitoring coordination during bimanual movements: where is the mastermind? J Cognit Neurosci 22:526–542

    Article  Google Scholar 

  • Ehrsson HH, Fagergren A, Jonsson T, Westling G, Johansson RS, Forssberg H (2000) Cortical activity in precision- versus power-grip tasks: an fMRI study. J Neurophysiol 83:528–536

    PubMed  CAS  Google Scholar 

  • Frey SH, Vintonb D, Norlund R, Grafton ST (2005) Cortical topography of human anterior intraparietal cortex active during visually guided grasping. Cognit Brain Res 23:397–405

    Article  Google Scholar 

  • Galletti C, Kutz DF, Gamberini M, Breveglieri R, Fattori P (2003) Role of the medial parieto-occipital cortex in the control of reaching and grasping movements. Exp Brain Res 153:158–170

    Article  PubMed  Google Scholar 

  • Glover S, Miall RC, Rushworth MFS (2005) Parietal rTMS disrupts the initiation but not the execution of on-line adjustments to a perturbation of object size. J Cog Neurosci 17:124–136

    Article  Google Scholar 

  • Gonzalez CL, Goodale MA (2009) Hand preference for precision grasping predicts language lateralization. Neuropsychologia 47:3182–3189

    Article  PubMed  Google Scholar 

  • Gonzalez CLR, Ganel T, Goodale MA (2006) Hemispheric specialization for the visual control of action is independent of handedness. J Neurophysiol 95:3496–3501

    Article  PubMed  Google Scholar 

  • Gonzalez CLR, Ganel T, Whitwell RL, Morrissey B, Goodale MA (2008) Practice makes perfect, but only with the right hand: sensitivity to perceptual illusions with awkward grasps decreases with practice in the right but not the left hand. Neuropsychologia 46:624–631

    Article  PubMed  CAS  Google Scholar 

  • Goodale MA, Meenan JP, Bülthoff HH, Nicolle DA, Murphy KJ, Racicot CI (1994) Separate neural pathways for the visual analysis of object shape in perception and prehension. Curr Biol 4:604–610

    Article  PubMed  CAS  Google Scholar 

  • Grafton ST (2010) The cognitive neuroscience of prehension: recent developments. Exp Brain Res 204:475–491

    Article  PubMed  Google Scholar 

  • Grol MJ, Majdandžić J, Stephan KE, Verhagen L, Dijkerman HC, Bekkering H, Verstraten FAJ, Toni I (2007) Parieto-frontal connectivity during visually guided grasping. J Neurosci 27:11877–11887

    Article  PubMed  CAS  Google Scholar 

  • Harris CM, Wolpert DM (1998) Signal-dependent noise determines motor planning. Nature 394:780–784

    Article  PubMed  CAS  Google Scholar 

  • Hughes CML, Franz EA (2008) Goal-related planning constraints in bimanual grasping and placing of objects. Exp Brain Res 188:541–550

    Article  PubMed  Google Scholar 

  • Jackson GM, Jackson SR, Kritikos A (1999) Attention for action: coordinating bimanual reach-to-grasp movements. Br J Psychol 90:247–270

    Article  PubMed  Google Scholar 

  • Jeannerod M (1981) Intersegmental coordination during reaching at natural visual objects. In: Long J, Baddeley A (eds) Attention and performance IX. Erlbaum, Hillsdale

    Google Scholar 

  • Keefe BD, Hibbard PB, Watt SJ (2011) Depth-cue integration in grasp programming: no evidence for a binocular specialism. Neuropsychologia 49:1246–1257

    Article  PubMed  Google Scholar 

  • Lederman SJ, Wing AM (2003) Perceptual judgement, grasp point selection and object symmetry. Exp Brain Res 152:156–165

    Article  PubMed  Google Scholar 

  • Luppino G, Rizzolatti G (2000) The organization of the frontal motor cortex. News Physiol Sci 15:219–224

    PubMed  Google Scholar 

  • Macaluso E, Frith CD, Driver J (2002) Crossmodal spatial influences of touch on extrastriate visual areas take current gaze direction into account. Neuron 34:647–658

    Article  PubMed  CAS  Google Scholar 

  • Murata A, Gallese V, Lupino G, Kaseda M, Sakata H (2000) Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. J Neurophysiol 83:2580–2601

    PubMed  CAS  Google Scholar 

  • Napier JR (1956) The prehensile movements of the human hand. J Bone Jt Surg 38:902–913

    Google Scholar 

  • Ochiai T, Mushiake H, Tanji J (2005) Involvement of the ventral premotor cortex in controlling image motion of the hand during performance of a target-capturing task. Cereb Cortex 15:929–937

    Article  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Olivier E, Davare M, Andres M, Fadiga L (2007) Precision grasping in humans: from motor control to cognition. Curr Opin Neurobiol 17:644–648

    Article  PubMed  CAS  Google Scholar 

  • Park JH, Shea CH (2002) Effector independence. J Motor Behav 34:253–270

    Article  Google Scholar 

  • Pelli DG (1997) The VideoToolbox software for visual psychophysics. Transforming numbers into movies. Spatial Vis 10:437–442

    Article  CAS  Google Scholar 

  • Rice NJ, Tunik E, Grafton ST (2006) The anterior intraparietal sulculs mediates grasp execution independent of requirement to update: new insights from transcranial magnetic stimulation. J Neurosci 26:8176–8182

    Article  PubMed  CAS  Google Scholar 

  • Rice NJ, Tunik E, Cross ES, Grafton ST (2007) On-line grasp control is mediated by the contralateral hemisphere. Brain Res 1175:76–84

    Article  PubMed  CAS  Google Scholar 

  • Ringo JL, Doty RW, Demeter S, Simard PY (1994) Time is of the essence: a conjecture that hemispheric specialization arises from inter-hemispheric conduction delay. Cereb Cortex 4:331–343

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996) Premotor cortex and the recognition of motor actions. Cognit Brain Res 3:131–141

    Article  CAS  Google Scholar 

  • Rochat P (1989) Object manipulation and exploration in 2- to 5-month-old infants. Dev Psychol 25:871–884

    Article  Google Scholar 

  • Rochat P (1993) Hand-mouth coordination in the newborn: Morphology, determinants, and early development of basic act. In: Savelsbergh GJP (ed) The Development of Coordination in Infancy. Elsevier Science Publishers, North Holland

    Google Scholar 

  • Rushworth MF, Johansen-Berg H, Göbel SM, Devlin JT (2003) The left parietal and premotor cortices: motor attention and selection. Neuroimage 20:89–100

    Article  Google Scholar 

  • Sakata H, Taira M (1994) Parietal control of hand action. Curr Opin Neurobiol 4:847–856

    Article  PubMed  CAS  Google Scholar 

  • Sakata H, Taira M, Murata A, Gallese V, Tanaka Y, Shikata E, Kusunoki M (1996) Parietal visual neurons coding three-dimensional characteristics of objects and their relation to hand action. In: Their P, Karnath HO (eds) Parietal lobe contributions to orientation in 3D space. Springer, New York

    Google Scholar 

  • Schlicht EJ, Schrater PR (2007) Effects of visual uncertainty on grasping movements. Exp Brain Res 182:47–57

    Article  PubMed  Google Scholar 

  • Siddiqui A (1995) Object size as a determinant of grasping in infancy. J Genet Psychol 156:345–358

    Article  PubMed  CAS  Google Scholar 

  • Singh VW, Stojanoski B, Le A, Niemeier M (2011) Spatial frequency-specific effects on the attentional bias: evidence for two attentional systems. Cortex 47:547–556

    Article  PubMed  Google Scholar 

  • Smeets JBJ, Brenner E (1999) A new view on grasping. Mot Control 3:237–271

    CAS  Google Scholar 

  • Smeets JBJ, Brenner E (2001) Independent movements of the digits in grasping. Exp Brain Res 139:92–100

    Article  PubMed  CAS  Google Scholar 

  • Swinnen SP (2002) Intermanual coordination: from behavioural principles to neural-network interactions. Nat Rev Neurosci 3:350–361

    Article  CAS  Google Scholar 

  • Tanné J, Boussaoud D, Boyer-Zeller N, Rouiller EM (1995) Direct visual pathways for reaching movements in the macaque monkey. NeuroReport 7:267–272

    PubMed  Google Scholar 

  • Tresilian JR, Stelmach GE (1997) Common organization for unimanual and bimanual reach-to-grasp tasks. Exp Brain Res 115:283–299

    Article  PubMed  CAS  Google Scholar 

  • Tunik E, Frey SH, Grafton ST (2005) Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Nat Neurosci 8:505–511

    PubMed  CAS  Google Scholar 

  • Tunik E, Ortigue S, Adamovich SV, Grafton ST (2008) Differential recruitment of anterior intraparietal sulcus and superior parietal lobule during visually guided grasping revealed by electrical neuroimaging. J Neurosci 28:13615–13620

    Article  PubMed  CAS  Google Scholar 

  • Umiltà C (1994) The Simon effect: introductory remarks. J Psychol Res 56:127–129

    Article  Google Scholar 

  • Vangheluwe S, Suy E, Wenderoth N, Swinnen SP (2006) Learning and transfer of bimanual multifrequency patterns: effector-independent and effector-specific levels of movement representation. Exp Brain Res 170:543–554

    Article  PubMed  Google Scholar 

  • Whishaw IQ, Coles BLK (1996) Varieties of paw and digit movement during spontaneous food handling in rat: postures, bimanual coordination, preferences, and the effects of forelimb cortex lesions. Behav Brain Res 77:135–148

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Niemeier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le, A., Niemeier, M. A right hemisphere dominance for bimanual grasps. Exp Brain Res 224, 263–273 (2013). https://doi.org/10.1007/s00221-012-3309-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-012-3309-z

Keywords

Navigation