Skip to main content
Log in

Quantification of postural stability in older adults using mobile technology

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Traditional biomechanical systems used to capture kinematic data have shown that declines in postural stability are frequently present in older adults and neurological populations. Recent advances in processor speed and measuring capabilities of on-board electronics within mobile devices present an opportunity to gather kinematic data and apply biomechanical analyses to potentially quantify postural stability. The aim of this project was to determine if the kinematic data gathered using a mobile device were of sufficient quantity and quality to characterize postural stability in older adults. Twelve healthy older adults completed six different balance conditions under altered surface, stance and vision. Simultaneous kinematic measurements were gathered from a three-dimensional motion analysis system and iPad during balance conditions. Correlation between the two systems was significant across balance conditions and outcome measures: peak-to-peak (r = 0.70–0.99), normalized path length (r = 0.64–0.98), root mean square (r = 0.73–0.99) of linear acceleration, 95 % volume (r = 0.96–0.99) of linear and angular acceleration and total power across different frequencies (r = 0.79–0.92). The mean absolute percentage error metric, used to evaluate time-series measurements point-by-point, indicated that when measuring linear and angular acceleration, the iPad tracked the motion analysis system with average error between 6 and 10 % of motion analysis measurements across all balance conditions. Collectively, similar accuracy with the iPad compared to motion capture suggests the sensors provide sufficient accuracy and quality for the quantification of postural stability in older adults. The objectivity, portability, and ease of use of this device make it ideal for use in clinical environments, which often lack biomechanical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aagaard P, Suetta C, Caserotti P, Magnusson SP, Kjaer M (2010) Role of the nervous system in sarcopenia and muscle atrophy with aging: strength training as a countermeasure. Scand J Med Sci Sports 20(1):49–64. doi:10.1111/j.1600-0838.2009.01084.x

    Article  CAS  PubMed  Google Scholar 

  • Adkin AL, Bloem BR, Allum JH (2005) Trunk sway measurements during stance and gait tasks in Parkinson’s disease. Gait Posture 22(3):240–249

    Article  CAS  PubMed  Google Scholar 

  • Allum JH, Adkin AL (2003) Improvements in trunk sway observed for stance and gait tasks during recovery from an acute unilateral peripheral vestibular deficit. Audiol Neuro-Otol 8(5):286–302. doi:10.1159/000071999

    Article  Google Scholar 

  • Allum JH, Adkin AL, Carpenter MG, Held-Ziolkowska M, Honegger F, Pierchala K (2001) Trunk sway measures of postural stability during clinical balance tests: effects of a unilateral vestibular deficit. Gait Posture 14(3):227–237

    Article  CAS  PubMed  Google Scholar 

  • Aminian K, Rezakhanlou K, De Andres E, Fritsch C, Leyvraz PF, Robert P (1999) Temporal feature estimation during walking using miniature accelerometers: an analysis of gait improvement after hip arthroplasty. Med Biol Eng Comput 37(6):686–691

    Article  CAS  PubMed  Google Scholar 

  • Aminian K, Trevisan C, Najafi B, Dejnabadi H, Frigo C, Pavan E, Telonio A, Cerati F, Marinoni EC, Robert P, Leyvraz PF (2004) Evaluation of an ambulatory system for gait analysis in hip osteoarthritis and after total hip replacement. Gait Posture 20(1):102–107. doi:10.1016/S0966-6362(03)00093-6

    Article  CAS  PubMed  Google Scholar 

  • Basta D, Rossi-Izquierdo M, Soto-Varela A, Ernst A (2013) Mobile posturography: posturographic analysis of daily-life mobility. Otol Neurotol 34(2):288–297. doi:10.1097/MAO.0b013e318277a29b

    Article  PubMed  Google Scholar 

  • Behrman AL, Light KE, Flynn SM, Thigpen MT (2002) Is the functional reach test useful for identifying falls risk among individuals with Parkinson’s disease? Arch Phys Med Rehabil 83(4):538–542

    Article  PubMed  Google Scholar 

  • Bell DR, Guskiewicz KM, Clark MA, Padua DA (2011) Systematic review of the balance error scoring system. Sports Health 3(3):287–295. doi:10.1177/1941738111403122

    Article  PubMed Central  PubMed  Google Scholar 

  • Berg K, Norman KE (1996) Functional assessment of balance and gait. Clin Geriatr Med 12(4):705–723

    CAS  PubMed  Google Scholar 

  • Beyer N, Simonsen L, Bulow J, Lorenzen T, Jensen DV, Larsen L, Rasmussen U, Rennie M, Kjaer M (2007) Old women with a recent fall history show improved muscle strength and function sustained for six months after finishing training. Aging Clin Exp Res 19(4):300–309

    Article  PubMed  Google Scholar 

  • Bloem BR, Grimbergen YA, Cramer M, Willemsen M, Zwinderman AH (2001) Prospective assessment of falls in Parkinson’s disease. J Neurol 248(11):950–958

    Article  CAS  PubMed  Google Scholar 

  • Blum L, Korner-Bitensky N (2008) Usefulness of the Berg Balance Scale in stroke rehabilitation: a systematic review. Phys Ther 88(5):559–566. doi:10.2522/ptj.20070205

    Article  PubMed  Google Scholar 

  • Boers I, Gerschlager W, Stalenhoef PA, Bloem BR (2001) Falls in the elderly. II. Strategies for prevention. Wien Klin Wochenschr 113(11–12):398–407

    CAS  PubMed  Google Scholar 

  • Bourke AK, Lyons GM (2008) A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor. Med Eng Phys 30(1):84–90. doi:10.1016/j.medengphy.2006.12.001

    Article  CAS  PubMed  Google Scholar 

  • Bourke AK, O’Brien JV, Lyons GM (2007) Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. Gait Posture 26(2):194–199. doi:10.1016/j.gaitpost.2006.09.012

    Article  CAS  PubMed  Google Scholar 

  • Bronstein JM, Tagliati M, Alterman RL, Lozano AM, Volkmann J, Stefani A, Horak FB, Okun MS, Foote KD, Krack P, Pahwa R, Henderson JM, Hariz MI, Bakay RA, Rezai A, Marks WJ Jr, Moro E, Vitek JL, Weaver FM, Gross RE, DeLong MR (2011) Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch Neurol 68(2):165. doi:10.1001/archneurol.2010.260

    PubMed  Google Scholar 

  • Cho CY, Kamen G (1998) Detecting balance deficits in frequent fallers using clinical and quantitative evaluation tools. J Am Geriatr Soc 46(4):426–430

    CAS  PubMed  Google Scholar 

  • Corporaal SH, Gensicke H, Kuhle J, Kappos L, Allum JH, Yaldizli O (2013) Balance control in multiple sclerosis: correlations of trunk sway during stance and gait tests with disease severity. Gait Posture 37(1):55–60. doi:10.1016/j.gaitpost.2012.05.025

    Article  PubMed  Google Scholar 

  • Dai R, Stein RB, Andrews BJ, James KB, Wieler M (1996) Application of tilt sensors in functional electrical stimulation. IEEE Trans Rehabil Eng 4(2):63–72

    Article  CAS  PubMed  Google Scholar 

  • Davis RB, Ounpuu S, Tyburski D, Gage JR (1991) A gait data collection and reduction technique. Hum Mov Sci 10:575–587

    Article  Google Scholar 

  • Duncan RP, Leddy AL, Cavanaugh JT, Dibble LE, Ellis TD, Ford MP, Foreman KB, Earhart GM (2012) Accuracy of fall prediction in Parkinson disease: six-month and 12-month prospective analyses. Parkinson’s Dis 2012:237673. doi:10.1155/2012/237673

    Google Scholar 

  • Fries JF (2002) Successful aging—an emerging paradigm of gerontology. Clin Geriatr Med 18(3):371–382

    Article  PubMed  Google Scholar 

  • Galan-Mercant A, Cuesta-Vargas AI (2014) Differences in trunk accelerometry between frail and non-frail elderly persons in functional tasks. BMC Res Notes 7:100. doi:10.1186/1756-0500-7-100

    Article  PubMed Central  PubMed  Google Scholar 

  • Gill J, Allum JH, Carpenter MG, Held-Ziolkowska M, Adkin AL, Honegger F, Pierchala K (2001) Trunk sway measures of postural stability during clinical balance tests: effects of age. J Gerontol Ser A Biol Sci Med Sci 56(7):M438–M447

    Article  CAS  Google Scholar 

  • Giorgetti MM, Harris BA, Jette A (1998) Reliability of clinical balance outcome measures in the elderly. Physiother Res Int 3(4):274–283

    Article  CAS  PubMed  Google Scholar 

  • Hamilton JD (1994) Time series analysis. Princeton University Press, Princeton

    Google Scholar 

  • Hegeman J, Shapkova EY, Honegger F, Allum JH (2007) Effect of age and height on trunk sway during stance and gait. J Vestib Res 17(2–3):75–87

    PubMed  Google Scholar 

  • Helbostad JL, Sletvold O, Moe-Nilssen R (2004) Effects of home exercises and group training on functional abilities in home-dwelling older persons with mobility and balance problems. A randomized study. Aging Clin Exp Res 16(2):113–121

    Article  PubMed  Google Scholar 

  • Holsgaard-Larsen A, Caserotti P, Puggaard L, Aagaard P (2011) Stair-ascent performance in elderly women: effect of explosive strength training. J Aging Phys Act 19(2):117–136

    PubMed  Google Scholar 

  • Horak A (1997) Clinical assessment of balance disorders. Gait Posture 6:76–84

    Article  Google Scholar 

  • Horak FB, Frank J, Nutt J (1996) Effects of dopamine on postural control in parkinsonian subjects: scaling, set, and tone. J Neurophysiol 75(6):2380–2396

    CAS  PubMed  Google Scholar 

  • Jorgensen MG (2014) Assessment of postural balance in community-dwelling older adults. Dan Med J 61(1):B4775

    PubMed  Google Scholar 

  • Kadaba MP, Ramakrishnan HK, Wootten ME (1990) Measurement of lower extremity kinematics during level walking. J Orthop Res 8(3):383–392. doi:10.1002/jor.1100080310

    Article  CAS  PubMed  Google Scholar 

  • Kamen G, Patten C, Du CD, Sison S (1998) An accelerometry-based system for the assessment of balance and postural sway. Gerontology 44(1):40–45

    Article  CAS  PubMed  Google Scholar 

  • Keijsers NL, Horstink MW, Gielen SC (2006) Ambulatory motor assessment in Parkinson’s disease. Mov Disord 21(1):34–44. doi:10.1002/mds.20633

    Article  PubMed  Google Scholar 

  • Kupsch A, Benecke R, Muller J, Trottenberg T, Schneider GH, Poewe W, Eisner W, Wolters A, Muller JU, Deuschl G, Pinsker MO, Skogseid IM, Roeste GK, Vollmer-Haase J, Brentrup A, Krause M, Tronnier V, Schnitzler A, Voges J, Nikkhah G, Vesper J, Naumann M, Volkmann J, Deep-Brain Stimulation for Dystonia Study G (2006) Pallidal deep-brain stimulation in primary generalized or segmental dystonia. N Engl J Med 355(19):1978–1990. doi:10.1056/NEJMoa063618

    Article  CAS  PubMed  Google Scholar 

  • Laughton CA, Slavin M, Katdare K, Nolan L, Bean JF, Kerrigan DC, Phillips E, Lipsitz LA, Collins JJ (2003) Aging, muscle activity, and balance control: physiologic changes associated with balance impairment. Gait Posture 18(2):101–108

    Article  PubMed  Google Scholar 

  • Li-MacDonald BX, Pyhtla J, Brandt N (2014) Medications and falls: addressing the risk through pharmacist-led quality initiatives. J Gerontol Nurs 40(1):8–12

    Article  PubMed  Google Scholar 

  • Luinge HJ, Veltink PH, Baten CT (1999) Estimating orientation with gyroscopes and accelerometers. Technol Health Care 7(6):455–459

    Article  CAS  PubMed  Google Scholar 

  • Maetzler W, Mancini M, Liepelt-Scarfone I, Muller K, Becker C, van Lummel RC, Ainsworth E, Hobert M, Streffer J, Berg D, Chiari L (2012) Impaired trunk stability in individuals at high risk for Parkinson’s disease. PLoS ONE 7(3):e32240. doi:10.1371/journal.pone.0032240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mancini M, Horak FB, Zampieri C, Carlson-Kuhta P, Nutt JG, Chiari L (2011) Trunk accelerometry reveals postural instability in untreated Parkinson’s disease. Parkinson’s Relat Disord 17(7):557–562. doi:10.1016/j.parkreldis.2011.05.010

    Article  Google Scholar 

  • Mancini M, Salarian A, Carlson-Kuhta P, Zampieri C, King L, Chiari L, Horak FB (2012) ISway: a sensitive, valid and reliable measure of postural control. J Neuroeng Rehabil 9:59. doi:10.1186/1743-0003-9-59

    Article  PubMed Central  PubMed  Google Scholar 

  • Mannan SK, Hodgson TL, Husain M, Kennard C (2008) Eye movements in visual search indicate impaired saliency processing in Parkinson’s disease. Prog Brain Res 171:559–562. doi:10.1016/S0079-6123(08)00679-1

    Article  PubMed Central  PubMed  Google Scholar 

  • Mayagoitia RE, Lotters JC, Veltink PH, Hermens H (2002a) Standing balance evaluation using a triaxial accelerometer. Gait Posture 16(1):55–59

    Article  PubMed  Google Scholar 

  • Mayagoitia RE, Nene AV, Veltink PH (2002b) Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems. J Biomech 35(4):537–542

    Article  PubMed  Google Scholar 

  • McNames J, Thong T, Aboy M (2004) Impulse rejection filter for artifact removal in spectral analysis of biomedical signals. In: Proceedings of annual international conference of the IEEE engineering in medicine and biology society 1:145–148. doi:10.1109/IEMBS.2004.1403112

  • Moe-Nilssen R (1998) A new method for evaluating motor control in gait under real-life environmental conditions. Part 1: the instrument. Clin Biomech 13(4–5):320–327

    Article  Google Scholar 

  • Moe-Nilssen R, Helbostad JL (2002) Trunk accelerometry as a measure of balance control during quiet standing. Gait Posture 16(1):60–68

    Article  PubMed  Google Scholar 

  • Moe-Nilssen R, Helbostad JL (2004) Estimation of gait cycle characteristics by trunk accelerometry. J Biomech 37(1):121–126

    Article  PubMed  Google Scholar 

  • Monsell EM, Furman JM, Herdman SJ, Konrad HR, Shepard NT (1997) Computerized dynamic platform posturography. Otolaryngol Head Neck Surg 117(4):394–398

    Article  CAS  PubMed  Google Scholar 

  • Norris JA, Marsh AP, Smith IJ, Kohut RI, Miller ME (2005) Ability of static and statistical mechanics posturographic measures to distinguish between age and fall risk. J Biomech 38(6):1263–1272. doi:10.1016/j.jbiomech.2004.06.014

    Article  PubMed  Google Scholar 

  • O’Sullivan M, Blake C, Cunningham C, Boyle G, Finucane C (2009) Correlation of accelerometry with clinical balance tests in older fallers and non-fallers. Age Ageing 38(3):308–313. doi:10.1093/ageing/afp009

    Article  PubMed  Google Scholar 

  • Palmerini L, Rocchi L, Mellone S, Valzania F, Chiari L (2011) Feature selection for accelerometer-based posture analysis in Parkinson’s disease. IEEE Trans Inf Technol Biomed 15(3):481–490. doi:10.1109/TITB.2011.2107916

    Article  PubMed  Google Scholar 

  • Pickering RM, Grimbergen YA, Rigney U, Ashburn A, Mazibrada G, Wood B, Gray P, Kerr G, Bloem BR (2007) A meta-analysis of six prospective studies of falling in Parkinson’s disease. Mov Disord 22(13):1892–1900. doi:10.1002/mds.21598

    Article  PubMed  Google Scholar 

  • Pohl M, Rockstroh G, Ruckriem S, Mrass G, Mehrholz J (2003) Immediate effects of speed-dependent treadmill training on gait parameters in early Parkinson’s disease. Arch Phys Med Rehabil 84(12):1760–1766

    Article  PubMed  Google Scholar 

  • Reilly DS, Woollacott MH, van Donkelaar P, Saavedra S (2008) The interaction between executive attention and postural control in dual-task conditions: children with cerebral palsy. Arch Phys Med Rehabil 89(5):834–842. doi:10.1016/j.apmr.2007.10.023

    Article  PubMed  Google Scholar 

  • Rispens SM, van Schooten KS, Pijnappels M, Daffertshofer A, Beek PJ, van Dieen JH (2014) Identification of fall risk predictors in daily life measurements: gait characteristics’ reliability and association with self-reported fall history. Neurorehabil Neural Repair. doi:10.1177/1545968314532031

    PubMed  Google Scholar 

  • Rockwood K, Awalt E, Carver D, MacKnight C (2000) Feasibility and measurement properties of the functional reach and the timed up and go tests in the Canadian study of health and aging. J Gerontol Ser A Biol Sci Med Sci 55(2):M70–M73

    Article  CAS  Google Scholar 

  • Rose DJ, Lucchese N, Wiersma LD (2006) Development of a multidimensional balance scale for use with functionally independent older adults. Arch Phys Med Rehabil 87(11):1478–1485. doi:10.1016/j.apmr.2006.07.263

    Article  PubMed  Google Scholar 

  • Sabatini AM, Martelloni C, Scapellato S, Cavallo F (2005) Assessment of walking features from foot inertial sensing. IEEE Trans Biomed Eng 52(3):486–494. doi:10.1109/TBME.2004.840727

    Article  PubMed  Google Scholar 

  • Salarian A, Russmann H, Vingerhoets FJ, Dehollain C, Blanc Y, Burkhard PR, Aminian K (2004) Gait assessment in Parkinson’s disease: toward an ambulatory system for long-term monitoring. IEEE Trans Biomed Eng 51(8):1434–1443. doi:10.1109/TBME.2004.827933

    Article  PubMed  Google Scholar 

  • Santos FJ, Costa RM, Tecuapetla F (2011) Stimulation on demand: closing the loop on deep brain stimulation. Neuron 72(2):197–198. doi:10.1016/j.neuron.2011.10.004

    Article  CAS  PubMed  Google Scholar 

  • Shacham E, Sheehan B, Volkmann N (2007) Density-based score for selecting near-native atomic models of unknown structures. J Struct Biol 158(2):188–195. doi:10.1016/j.jsb.2006.12.005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simon SR (2004) Quantification of human motion: gait analysis-benefits and limitations to its application to clinical problems. J Biomech 37(12):1869–1880. doi:10.1016/j.jbiomech.2004.02.047

    Article  PubMed  Google Scholar 

  • Tong K, Granat MH (1999) A practical gait analysis system using gyroscopes. Med Eng Phys 21(2):87–94

    Article  CAS  PubMed  Google Scholar 

  • van den Bogert A, Read L, Nigg BM (1996) A method for inverse dynamic analysis using accelerometry. J Biomech 29(7):949–954

    Article  PubMed  Google Scholar 

  • Veltink PH (1999) Sensory feedback in artificial control of human mobility. Technol Health Care 7(6):383–391

    CAS  PubMed  Google Scholar 

  • Veltink PH, Bussmann HB, de Vries W, Martens WL, Van Lummel RC (1996) Detection of static and dynamic activities using uniaxial accelerometers. IEEE Trans Rehabil Eng 4(4):375–385

    Article  CAS  PubMed  Google Scholar 

  • Volkmann H, Schwartz T, Kirchen S, Stofer C, Obst U (2007) Evaluation of inhibition and cross-reaction effects on real-time PCR applied to the total DNA of wastewater samples for the quantification of bacterial antibiotic resistance genes and taxon-specific targets. Mol Cell Probes 21(2):125–133. doi:10.1016/j.mcp.2006.08.009

    Article  CAS  PubMed  Google Scholar 

  • Whitney SL, Roche JL, Marchetti GF, Lin CC, Steed DP, Furman GR, Musolino MC, Redfern MS (2011) A comparison of accelerometry and center of pressure measures during computerized dynamic posturography: a measure of balance. Gait Posture 33(4):594–599. doi:10.1016/j.gaitpost.2011.01.015

    Article  CAS  PubMed  Google Scholar 

  • Woollacott M, Shumway-Cook A (2002) Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture 16(1):1–14

    Article  PubMed  Google Scholar 

  • Wu G, Ladin Z (1996) The study of kinematic transients in locomotion using the integrated kinematic sensor. IEEE Trans Rehabil Eng 4(3):193–200

    Article  CAS  PubMed  Google Scholar 

  • Yack HJ, Berger RC (1993) Dynamic stability in the elderly: identifying a possible measure. J Gerontol 48(5):M225–M230

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mike Buss, who led the development of the Cleveland Clinic Balance App, Mark Gustetic, Joshua Hirsch, and David Schindler for assistance in data processing along with Matt Streicher who contributed to data collection with the motion analysis system. This study was supported by R01NS073717-01 and the Parkinson's Disease Foundation.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay L. Alberts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozinga, S.J., Alberts, J.L. Quantification of postural stability in older adults using mobile technology. Exp Brain Res 232, 3861–3872 (2014). https://doi.org/10.1007/s00221-014-4069-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-4069-8

Keywords

Navigation