Skip to main content
Log in

Liouville property for groups and manifolds

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We introduce a method to estimate the entropy of random walks on groups. We apply this method to exhibit the existence of compact manifolds with amenable fundamental groups such that the universal cover is not Liouville. We also use the criterion to prove that a finitely generated solvable group admits a symmetric measure with non-trivial Poisson boundary if and only if this group is not virtually nilpotent. This, in particular, shows that any polycyclic group admits a symmetric measure such that its boundary does not readily interprete in terms of the ambient Lie group. As another application we get a series of examples of amenable groups such that any finite entropy non-degenerate measure on them has non-trivial Poisson boundary. Since the groups in question are amenable, they do admit measures such that the corresponding random walks have trivial boundary; the above shows that such measures on these groups have infinite entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avez, A.: Entropie des groupes de type fini. C. R. Acad. Sci. Paris, Sér. I, Math. 275A, 1363–1366 (1972)

    MathSciNet  Google Scholar 

  2. Avez, A.: Théorème de Choquet-Deny pour les groupes à croissance non exponentielle. C. R. Acad. Sci. Paris, Sér. I, Math. 279, 25–28 (1974)

    MathSciNet  Google Scholar 

  3. Avez, A.: Croissance des groupes de type fini et fonctions harmoniques. Théorie ergodique (Actes Journées Ergodiques, Rennes, 1973/1974), pp. 35–49. Lect. Notes Math. 532. Berlin: Springer 1976

  4. Avez, A.: Harmonic functions on groups. Differential geometry and relativity, pp. 27–32. Math. Phys. Appl. Math., Vol. 3. Dordrecht: Reidel 1976

  5. Azencott, R.: Espaces de Poisson des groupes localement compacts. Lect. Notes Math. Vol. 148. Berlin, New York: Springer 1970

  6. Baumslag, G.: Subgroups of finitely presented metabelian groups. J. Aust. Math. Soc. 16, 98–110 (1973)

    Article  Google Scholar 

  7. Benjamimi, Y.: Instability of the Liouville property for quasi-isometric graphs and manifolds of polynomial volume growth. J. Theor. Probab. 4, 631–637 (1991)

    Article  Google Scholar 

  8. Birge, L., Raugi, A.: Fonctions harmoniques sur les groupes moyennables. C. R. Acad. Sci. Paris, Sér. I, Math. 278, 1287–1289 (1974)

    MathSciNet  Google Scholar 

  9. Blackwell, D.: On transient Markov processes with a countable number of states and stationary transition probabilities. Ann. Math. Statist. 26, 654–658 (1955)

    Article  MathSciNet  Google Scholar 

  10. Choquet, G., Deny, J.: Sur lé quation de convolution μ=μ*σ. C. R. Acad. Sci. Paris, Sér. I, Math. 250, 799–801 (1960)

    Google Scholar 

  11. Dynkin, E.B., Maljutov, M.B.: Random walk on groups with a finite number of generators. Dokl. Akad. Nauk SSSR 137, 1042–1045 (1961)

    MathSciNet  Google Scholar 

  12. Derriennic, Y.: Quelques applications du théoreme ergodique sous-additif. Astérisque 74, 183–201 (1980)

    Google Scholar 

  13. Dyubina, A.: Characteristics of random walks on wreath product of groups. Zapiski Semin. POMI 256, 31–37 (1999)

    Google Scholar 

  14. Erschler (Dyubina), A.: Drift and entropy growth for random walk on groups. Russ. Math. Surv. 56, 179–180 (2001)

    Article  Google Scholar 

  15. Erschler, A.: Drift and entropy growth for random walks on groups. To appear in Ann. Probab.

  16. Erschler, A.: Boundary behaviour for groups of subexponential growth. Preprint, January 2003

  17. Guivarch, Y.: Marches aleatoires à pas markoviens. C. R. Acad. Sci. Paris, S.r. A-B 289, 541–543 (1979)

    Google Scholar 

  18. Dynkin, E.B., Maljutov, M.B.: Random walk on groups with a finite number of generators. Dokl. Akad. Nauk SSSR 137, 1042–1045 (1961)

    MathSciNet  Google Scholar 

  19. Furstenberg, H.: A Poisson formula for semi-simple Lie groups. Ann. Math. 77, 335–386 (1963)

    Article  MathSciNet  Google Scholar 

  20. Furstenberg, H.: Boundary theory and stochastic processes on homogeneous spaces. Proc. Symp. Pure Math. 26, 193–229 (1974). Providence, R.I.: Am. Math. Soc.

    Article  Google Scholar 

  21. Gromov, M.: Metric structures for Riemannian and non-Riemannians paces. Progr. in Mathematics, 152. Boston, MA: Birkhäuser 1999

  22. Kaimanovich, V.A.: Brownian motion and harmonic function on covering manifolds. An entropic approach. Dokl. Akad. Nauk SSSR 288, 1045–1049 (1986)

    Google Scholar 

  23. Kaimanovich, V.A.: Poisson Boundaries of random walks on discrete solvable groups. Probability measures on groups, X (Oberwolfach, 1990), 205–238. New York: Plenum 1991

    Article  Google Scholar 

  24. Kaimanovich, V.A.: Discretisation of bounded harmonic functions on Riemannian manifolds and entropy. Potential theory (Nagoya, 1990), 213–223. Berlin: de Gruyter 1992

    Google Scholar 

  25. Kaimanovich, V.A., Vershik, A.M.: Random walks on groups: boundary, entropy, uniform distribution. Soviet. Math. Dokl. 20, 1170–1173 (1979)

    Google Scholar 

  26. Kaimanovich, V.A., Vershik, A.M.: Random walks on discrete groups: boundary and entropy. Ann. Probab. 11, 457–490 (1983)

    Article  MathSciNet  Google Scholar 

  27. Kesten, H.: Full Banach mean values on countable groups. Math. Scand. 7, 146–156 (1959)

    Article  MathSciNet  Google Scholar 

  28. Kropholler, P.H.: On finitely generated soluble groups with no large wreath product sections. Proc. London Math. Soc. (3) 49, 155–169 (1984)

  29. Lyons, T.: Instability of Liouville property for quasi-isometric Riemannian manifolds and reversible Markov chains. J. Differ. Geom. 26, 33–66 (1987)

    Article  Google Scholar 

  30. Lyons, T., Sullivan, D.: Fuction theory, random paths and covering spaces. J. Differ. Geom. 19, 299–323 (1984)

    Article  Google Scholar 

  31. Margulis, G.A.: Positive harmonic functions on nilpotent groups. Dokl. Akad. Nauk SSSR 166, 1054–1057, translated as Soviet Math. Dokl. 7, 241–244 (1966)

    Google Scholar 

  32. Milnor, J.: Growth of finitely generated solvable groups. J. Differ. Geom. 2, 447–449 (1968)

    Article  Google Scholar 

  33. Rohklin, V.A.: Lectures on entropic theory of transformations with invariant measure. Russ. Math. Surv. 22, 3–56 (1967)

    Article  Google Scholar 

  34. Rosenblatt, J.: Ergodic and mixing random walks on locally compact groups. Math. Ann. 257, 31–42 (1981)

    Article  MathSciNet  Google Scholar 

  35. Spitzer, F.: Principles of random walk. Princeton: Van Nostrand 1964

  36. Varopoulos, N.Th.: Théorie du potentiel sur des groupes et des variétés. C. R. Acad. Sci. Paris, Sér. I, Math. 302, 203–205 (1986)

    MathSciNet  Google Scholar 

  37. Vershik, A.M.: Dynamical theory of growth of groups: entropy, boundaries, examples. Russ. Math. Surv. 55, 59–128 (2000)

    Article  Google Scholar 

  38. Wolf, J.A.: Growth of finitely generated solvable groups and curvature of Riemannian manifolds. J. Differ. Geom. 2, 421–446 (1968)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Erschler.

Additional information

Mathematics Subject Classification (1991)

60B15, 60J50, 28D20, 20P05, 43A07, 60J65, 43A85, 20f16

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erschler, A. Liouville property for groups and manifolds. Invent. math. 155, 55–80 (2004). https://doi.org/10.1007/s00222-003-0314-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-003-0314-7

Keywords

Navigation