Skip to main content
Log in

On the stability of Riemannian manifold with parallel spinors

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Inspired by the recent work [HHM03], we prove two stability results for compact Riemannian manifolds with nonzero parallel spinors. Our first result says that Ricci flat metrics which also admit nonzero parallel spinors are stable (in the direction of changes in conformal structures) as the critical points of the total scalar curvature functional. Our second result, which is a local version of the first one, shows that any metric of positive scalar curvature cannot lie too close to a metric with nonzero parallel spinor. We also prove a rigidity result for special holonomy metrics. In the case of SU(m) holonomy, the rigidity result implies that scalar flat deformations of Calabi-Yau metric must be Calabi-Yau. Finally we explore the connection with a positive mass theorem of [D03], which presents another approach to proving these stability and rigidity results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belegradek, I., Wei, G.: Metrics of positive Ricci curvature on bundles. Int. Math. Res. Not. 2004, 56–72 (2004)

    Article  Google Scholar 

  2. Besse, A.L.: Einstein manifolds. Berlin: Springer 1987

  3. Bogomolov, F.A.: Hamiltonian Kähler manifolds. Dokl. Akad. Nauk SSSR 243, 1101–1104 (1978)

    Google Scholar 

  4. Brooks, R.: The fundamental group and the spectrum of the Laplacian. Comment. Math. Helv. 56, 581–598 (1981)

    Google Scholar 

  5. Bryant, R.: Metrics with exceptional holonomy. Ann. Math. (2) 126, 525–576 (1987)

    Google Scholar 

  6. Bryant, R.: Some remarks on G2 manifolds. math.DG/0305124

  7. Candelas, P., Horowitz, G., Strominger, A., Witten, E.: Vacuum configurations for superstrings. Nucl. Phys. B 258, 46–74 (1985)

    Article  Google Scholar 

  8. Cao, H.-D., Hamilton, R.S., Ilmanen, T.: Gaussian densities and stability for some Ricci solitons. math.DG/0404165

  9. Cheeger, J., Gromoll, D.: The splitting theorem for manifolds of non-negative Ricci curvature. J. Differ. Geom. 6, 119–128 (1971)

    Google Scholar 

  10. Dai, X.: A Positive Mass Theorem for Sapces with Asymptotic SUSY Compactifcation. Commun. Math. Phys. 244, 335–345 (2004)

    Article  MathSciNet  Google Scholar 

  11. do Carmo, M.: Riemannian Geometry. Birkhäuser 1992

  12. Fischer, A., Marsden, J.: Linearization stability of nonlinear partial differential equations. In: Differential geometry (Proc. Symp. Pure Math., vol. XXVII, Stanford Univ., Stanford, Calif., 1973), Part 2, pp. 219–263. Providence, R.I.: Amer. Math. Soc. 1975

  13. Futaki, A.: Scalar-flat closed manifolds not admitting positive scalar curvature metrics. Invent. Math. 112, 23–29 (1993)

    Article  Google Scholar 

  14. Gromov, M., Lawson Jr., H.B.: The classification of simply connected manifolds of positive scalar curvature. Ann. Math. 111, 423–434 (1980)

    Google Scholar 

  15. Guenther, C., Isenberg, J., Knopf, D.: Stability of the Ricci flow at Ricci-flat metrics. Commun. Anal. Geom. 10, 741–777 (2002)

    Google Scholar 

  16. Hertog, T., Horowitz, G., Maeda, K.: Negative energy density in Calabi-Yau compactifications. JHEP 0305, 060 (2003). hep-th/0304199

    Article  Google Scholar 

  17. Hitchin, N.: Harmonic spinors. Adv. Math. 14, 1–55 (1974)

    Article  Google Scholar 

  18. Hitchin, N.: Compact four-dimensional Einstein manifolds. J. Differ. Geom. 9, 435–441 (1974)

    Google Scholar 

  19. Joyce, D.: Compact manifolds with special holonomy. Oxford: Oxford Univ. Press 2000

  20. Kazdan, J.L., Warner, F.W.: Prescribing curvatures. In: Differential geometry (Proc. Symp. Pure Math., vol. XXVII, Stanford Univ., Stanford, Calif., 1973), Part 2, pp. 309–319. Providence, R.I.: Amer. Math. Soc. 1975

  21. Koiso, N.: Rigidity and stability of Einstein metrics. The case of compact symmetric spaces. Osaka J. Math. 17, 51–73 (1980)

    Google Scholar 

  22. Lawson Jr., H.B., Michelsohn, M.-L.: Spin geometry. Princeton, NJ: Princeton University Press 1989

  23. Lichnerowicz, A.: Spineurs harmonique. C. R. Acad. Sci., Paris, Sér. A-B 257, 7–9 (1963)

    Google Scholar 

  24. Milnor, J.: A note on curvature and fundamental group. J. Differ. Geom. 2, 1–7 (1968)

    Google Scholar 

  25. Morgan, J.: The Seiberg-Witten equations and applications to the topology of smooth four-manifolds. Princeton, NJ: Princeton Univ. Press 1996

  26. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. math.DG/0211159

  27. Schoen, R.M.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differ. Geom. 20, 479–495 (1984)

    Google Scholar 

  28. Schoen, R.M.: Variational theory for the total scalar curvature functional for Riemannian metrics and related topics. In: Topics in calculus of variations (Montecatini Terme, 1987), pp. 120–154. Berlin: Springer 1989

  29. Schoen, R.M., Yau, S.T.: On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65, 45–76 (1979)

    Google Scholar 

  30. Schoen, R.M., Yau, S.T.: On the structure of manifolds with posiitve scalar curvature. Manuscr. Math. 28, 159–183 (1979)

    Article  Google Scholar 

  31. Stolz, S.: Simply connected manifolds of positive scalar curvature. Ann. Math. 136, 511–540 (1992)

    Google Scholar 

  32. Tian, G.: Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric. In: Mathematical aspects of string theory, pp. 629–646. World Scientific 1986

  33. Todorov, A.: The Weil-Petersson geometry of the moduli space of SU(n≥3) (Calabi-Yau) manifolds. I. Commun. Math. Phys. 126, 325–346 (1989)

    Google Scholar 

  34. Wang, M.: Parallel spinors and parallel forms. Ann. Global Anal. Geom. 7, 59–68 (1989)

    Article  Google Scholar 

  35. Wang, M.: Preserving parallel spinors under metric deformations. Indiana Univ. Math. J. 40, 815–844 (1991)

    Article  Google Scholar 

  36. Wei, G.: Examples of complete manifolds of positive Ricci curvature with nilpotent isometry groups. Bull. Am. Math. Soc., New Ser. 19, 311–313 (1988)

    Google Scholar 

  37. Witten, E.: A new proof of the positive energy theorem. Commun. Math. Phys. 80, 381–402 (1981)

    Article  Google Scholar 

  38. Yau, S.T.: Calabi’s conjecture and some new results in algebraic geometry. Proc. Natl. Acad. Sci. USA 74, 1798–1799 (1977)

    Google Scholar 

  39. Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Commun. Pure Appl. Math. 31, 339–411 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianzhe Dai, Xiaodong Wang or Guofang Wei.

Additional information

Dedicated to Jeff Cheeger for his sixtieth birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, X., Wang, X. & Wei, G. On the stability of Riemannian manifold with parallel spinors. Invent. math. 161, 151–176 (2005). https://doi.org/10.1007/s00222-004-0424-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-004-0424-x

Keywords

Navigation