Skip to main content
Log in

The topological structure of scaling limits of large planar maps

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We discuss scaling limits of large bipartite planar maps. If p≥2 is a fixed integer, we consider, for every integer n≥2, a random planar map M n which is uniformly distributed over the set of all rooted 2p-angulations with n faces. Then, at least along a suitable subsequence, the metric space consisting of the set of vertices of M n , equipped with the graph distance rescaled by the factor n -1/4, converges in distribution as n→∞ towards a limiting random compact metric space, in the sense of the Gromov–Hausdorff distance. We prove that the topology of the limiting space is uniquely determined independently of p and of the subsequence, and that this space can be obtained as the quotient of the Continuum Random Tree for an equivalence relation which is defined from Brownian labels attached to the vertices. We also verify that the Hausdorff dimension of the limit is almost surely equal to 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, R., Werner, W.: Avoiding probabilities for Brownian snakes and super-Brownian motion. Electron. J. Probab. 2(3), 27 (1997)

    Google Scholar 

  2. Aldous, D.: The continuum random tree I. Ann. Probab. 19, 1–28 (1991)

    MATH  Google Scholar 

  3. Aldous, D.: The continuum random tree III. Ann. Probab. 21, 248–289 (1993)

    MATH  Google Scholar 

  4. Ambjorn, J., Durhuus, B., Jonsson, T.: Quantum Geometry. A Statistical Field Theory Approach. Cambr. Monogr. Math. Phys., vol. 1. Cambridge Univ. Press, Cambridge (1997)

    Google Scholar 

  5. Angel, O.: Growth and percolation on the uniform infinite planar triangulation. Geom. Funct. Anal. 3, 935–974 (2003)

    Article  Google Scholar 

  6. Angel, O., Schramm, O.: Uniform infinite planar triangulations. Commun. Math. Phys. 241, 191–213 (2003)

    MATH  Google Scholar 

  7. Bouttier, J.: Physique statistique des surfaces aléatoires et combinatoire bijective des cartes planaires. PhD thesis, Université Paris 6. (2005) http://tel.ccsd.cnrs.fr/documents/archives0/00/01/06/51/index.html

  8. Bouttier, J., Di Francesco, P., Guitter, E.: Planar maps as labeled mobiles. Electron. J. Comb. 11, #R69. (2004)

  9. Brézin, E., Itzykson, C., Parisi, G., Zuber, J.B.: Planar diagrams. Commun. Math. Phys. 59, 35–51 (1978)

    Article  Google Scholar 

  10. Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry. Grad. Stud. Math., vol. 33. AMS, Boston (2001)

    MATH  Google Scholar 

  11. Chassaing, P., Durhuus, B.: Local limit of labeled trees and expected volume growth in a random quadrangulation. Ann. Probab. 34, 879–917 (2006)

    Article  MATH  Google Scholar 

  12. Chassaing, P., Schaeffer, G.: Random planar lattices and integrated super Brownian excursion. Probab. Theory Relat. Fields 128, 161–212 (2004)

    Article  MATH  Google Scholar 

  13. Cori, R., Vauquelin, B.: Planar maps are well labeled trees. Can. J. Math. 33, 1023–1042 (1981)

    MATH  Google Scholar 

  14. David, F.: Planar diagrams, two-dimensional lattice gravity and surface models. Nucl. Phys. B 257, 45–58 (1985)

    Article  Google Scholar 

  15. Duquesne, T., Le Gall, J.F.: Probabilistic and fractal aspects of Lévy trees. Probab. Theory Relat. Fields 131, 553–603 (2005)

    Article  MATH  Google Scholar 

  16. Ethier, S.N., Kurtz, T.: Markov Processes: Characterization and Convergence. Wiley, New York (1986)

    MATH  Google Scholar 

  17. Gromov, M.: Metric Structures for Riemannian and Non-Riemannian Spaces. Birkhäuser, Boston (2001)

    Google Scholar 

  18. ’t Hooft, G.: A planar diagram theory for strong interactions. Nucl. Phys. B 72, 461–473 (1974)

    Article  Google Scholar 

  19. Janson, S., Marckert, J.F.: Convergence of discrete snakes. J. Theor. Probab. 18, 615–645 (2005)

    Article  MATH  Google Scholar 

  20. Krikun, M.: Local structure of random quadrangulations. Preprint (2005) arxiv:math.PR/0512304

  21. Le Gall, J.F.: Spatial Branching Processes, Random Snakes and Partial Differential Equations. Lect. Math. ETH Zürich. Birkhäuser, Boston (1999)

    MATH  Google Scholar 

  22. Le Gall, J.F.: Random trees and applications. Probab. Surv. 2, 245–311 (2005)

    Article  Google Scholar 

  23. Le Gall, J.F.: A conditional limit theorem for tree-indexed random walk. Stochastic Processes Appl. 116, 539–567 (2006)

    Article  MATH  Google Scholar 

  24. Le Gall, J.F., Paulin, F.: Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere. Preprint (2006) arXiv:math.PR/0612315

  25. Le Gall, J.F., Weill, M.: Conditioned Brownian trees. Ann. Inst. Henri Poincaré, Probab. Stat. 42, 455–489 (2006)

    Article  MATH  Google Scholar 

  26. Marckert, J.F., Miermont, G.: Invariance principles for labeled mobiles and bipartite planar maps. To appear in Ann. Probab. (2005) arXiv:math.PR/0504110

  27. Marckert, J.F., Mokkadem, A.: Limit of normalized quadrangulations. The Brownian map. Ann. Probab. 34, 2144–2202 (2006)

    MATH  Google Scholar 

  28. Neveu, J.: Arbres et processus de Galton-Watson. Ann. Inst. Henri Poincaré, Probab. Stat. 22, 199–207 (1986)

    MATH  Google Scholar 

  29. Schaeffer, G.: Conjugaison d’arbres et cartes combinatoires aléatoires. PhD thesis, Université Bordeaux I. (1998) http://www.lix.polytechnique.fr/∼schaeffe/Biblio/

  30. Tutte, W.T.: A census of planar maps. Can. J. Math. 15, 249–271 (1963)

    MATH  Google Scholar 

  31. Weill, M.: Asymptotics for rooted planar maps and scaling limits of two-type Galton-Watson trees. To appear in Electron. J. Probab. (2007) arXiv:math.PR/0609334

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Le Gall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Gall, JF. The topological structure of scaling limits of large planar maps. Invent. math. 169, 621–670 (2007). https://doi.org/10.1007/s00222-007-0059-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-007-0059-9

Keywords

Navigation