Skip to main content

Advertisement

Log in

Continuum limits of random matrices and the Brownian carousel

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We show that at any location away from the spectral edge, the eigenvalues of the Gaussian unitary ensemble and its general β siblings converge to Sine  β , a translation invariant point process. This process has a geometric description in term of the Brownian carousel, a deterministic function of Brownian motion in the hyperbolic plane.

The Brownian carousel, a description of the a continuum limit of random matrices, provides a convenient way to analyze the limiting point processes. We show that the gap probability of Sine  β is continuous in the gap size and β, and compute its asymptotics for large gaps. Moreover, the stochastic differential equation version of the Brownian carousel exhibits a phase transition at β=2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deift, P.A.: Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach. Courant Lecture Notes in Mathematics. AMS, New York (1999)

    Google Scholar 

  2. Deift, P., Its, A., Zhou, X.: A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrices and also in the theory of integrable statistical mechanics. Ann. Math. 146, 149–235 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Deift, P., Kriecherbauer, T., McLaughlin, K.T.-R., Venakides, S., Zhou, X.: Strong asymptotics of orthogonal polynomials with respect to exponential weights. Commun. Pure Appl. Math. 52(12), 1491–1552 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dumitriu, I., Edelman, A.: Matrix models for beta ensembles. J. Math. Phys. 43(11), 5830–5847 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dyson, F.: Statistical theory of energy levels of complex systems II. J. Math. Phys. 3, 157–165 (1962)

    Article  MathSciNet  Google Scholar 

  6. Edelman, A., Sutton, B.D.: From random matrices to stochastic operators. J. Stat. Phys. 127(6), 1121–1165 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ethier, S.N., Kurtz, T.G.: Markov Processes. Wiley, New York (1986)

    Book  MATH  Google Scholar 

  8. Forrester, P.: Log-Gases and Random Matrices (2008) (book in preparation). www.ms.unimelb.edu.au/~matpjf/matpjf.html

  9. Hille, E.: Note on a power series considered by Hardy and Littlewood. J. Lond. Math. Soc. 4(15), 176–183 (1929). doi:10.1112/jlms/s1-4.15.176

    Article  Google Scholar 

  10. Jimbo, M., Miwa, T., Môri, Y., Sato, M.: Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent. Physica D 1, 80–158 (1980)

    Article  MathSciNet  Google Scholar 

  11. Kallenberg, O.: Foundations of Modern Probability. Springer, New York (2002)

    MATH  Google Scholar 

  12. Killip, R.: Gaussian fluctuations for β ensembles. Int. Math. Res. Not. (2008). Art. ID mn007, 19 pp.

  13. Killip, R., Stoiciu, M.: Eigenvalue statistics for CMV matrices: From Poisson to clock via random matrix ensembles. Duke Math. J. 146(3), 361–399 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Mehta, M.L.: Random Matrices, 3rd edn. Elsevier/Academic, Amsterdam (2004)

    MATH  Google Scholar 

  15. Ramírez, J., Rider, B., Virág, B.: Beta ensembles, stochastic Airy spectrum, and a diffusion (2007). arXiv:math/0607331

  16. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  17. Stroock, D.W., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Classics in Mathematics. Springer, Berlin (1979)

    MATH  Google Scholar 

  18. Sutton, B.D.: The stochastic operator approach to random matrix theory. Ph.D. thesis, MIT, Department of Mathematics (2005)

  19. Trotter, H.F.: Eigenvalue distributions of large Hermitian matrices; Wigner’s semicircle law and a theorem of Kac, Murdock, and Szegő. Adv. Math. 54(1), 67–82 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  20. Virág, B.: Scaling limits of random matrices. Plenary lecture, 31st Conference on Stochastic Processes and their Applications, Paris, July 17–21, 2006

  21. Widom, H.: The asymptotics of a continuous analogue of orthogonal polynomials. J. Approx. Theory 77, 51–64 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bálint Virág.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valkó, B., Virág, B. Continuum limits of random matrices and the Brownian carousel. Invent. math. 177, 463–508 (2009). https://doi.org/10.1007/s00222-009-0180-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-009-0180-z

Keywords

Navigation