Skip to main content
Log in

Cohomology of p-adic Stein spaces

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We compute p-adic étale and pro-étale cohomologies of Drinfeld half-spaces. In the pro-étale case, the main input is a comparison theorem for p-adic Stein spaces; the cohomology groups involved here are much bigger than in the case of étale cohomology of algebraic varieties or proper analytic spaces considered in all previous works. In the étale case, the classical p-adic comparison theorems allow us to pass to a computation of integral differential forms cohomologies which can be done because the standard formal models of Drinfeld half-spaces are pro-ordinary and their differential forms are acyclic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Recall that a subset X of a locally convex vector space over \( {{\mathbf {Q}}}_p\) is called bounded if \(p^nx_n\mapsto 0\) for all sequences \(\{x_n\}, n\in {{\mathbf {N}}},\) of elements of X. In the above, x is called a G-bounded vector if its G-orbit is a bounded set.

  2. Recall that a rigid analytic space Y is Stein if it has an admissible affinoid covering \(Y=\cup _{i\in {{\mathbf {N}}}}U_i\) such that \(U_i\Subset U_{i+1}\), i.e., the inclusion \(U_i\subset U_{i+1}\) factors over the adic compactification of \(U_i\). The key property we need is the acyclicity of cohomology of coherent sheaves.

  3. See Sect. 3.1.1 for the definition.

  4. Actually, as was pointed out to us by Grosse-Klönne and Berkovich, the proof of Drinfeld, in the case \(\ell =p\), is flawed, but one can find a correct proof in [27].

  5. See Sect. 3.1.1 for the definition.

  6. At least when X is associated to a weak formal scheme.

  7. For us, a K-topological vector space is a K-vector space with a linear topology.

  8. An additive category with kernels and cokernels is called quasi-abelian if every pullback of a strict epimorphism is a strict epimorphism and every pushout of a strict monomorphism is a strict monomorphism. Equivalently, an additive category with kernels and cokernels is called quasi-abelian if \(\mathrm {Ext} (-,-)\) is bifunctorial.

  9. Recall [73, 1.1.4] that a sequence \(A{\mathop {\rightarrow }\limits ^{e}} B{\mathop {\rightarrow }\limits ^{f}} C\) such that \(fe=0\) is called strictly exact if the morphism e is strict and the natural map \(\mathrm {im}\, e\rightarrow \ker f \) is an isomorphism.

  10. If the spaces involved are actually Banach, we will sometimes use the notation LB instead of LF.

  11. Here we used the fact that our field K is spherically complete.

  12. Inductive system \(\{V_n\}\), \(n\ge 0\), with injective transition maps is called regular if for each bounded set B in \(V=\varinjlim _n V_n\) there exists an n such that \(B\subset V_n\) and B is bounded in \(V_n\).

  13. A map \(f:V\rightarrow W\) between two convex K-vector spaces is called nuclear if it can be factored \(f:V\rightarrow V_1{\mathop {\rightarrow }\limits ^{f_1}} W_1\rightarrow W\), where the map \(f_1\) is a compact map between Banach spaces.

  14. We will call a functor F right exact if it transfers strict exact sequences \(0\rightarrow A\rightarrow B\rightarrow C\rightarrow 0\) to costrict exact sequences \(F(A)\rightarrow F(B)\rightarrow F(C)\rightarrow 0\); functor RR in the language of Schneiders [72, § 1.1].

  15. Sometimes called rigid analytic space with overconvergent structure sheaf.

  16. Recall [61] that an idealized log-scheme is a log-scheme together with an ideal in its log-structure that maps to zero in the structure sheaf. There is a notion of log-smooth morphism of idealized log-schemes. Log-smooth idealized log-schemes behave like classical log-smooth log-schemes. One can extend the definitions of log-crystalline, log-convergent, and log-rigid cohomology, as well as that of de Rham–Witt complexes to idealized log-schemes. In what follows we will often skip the word “idealized” if understood.

  17. See however [77].

  18. Recall that an exactification is an operation that turns closed immersions of log-schemes into exact closed immersions.

  19. Note that the category of hypercovers, up to a simplicial homotopy, is filtered. Indeed, since we have fiber products, the issue here is just with equalizers but those exists, up to a simplicial homotopy, by the very general fact [78, Tag 01GS]. Moreover, they induce a homotopy on the corresponding complexes.

  20. The formula that follows, while entirely informal, should give the reader an idea about the definition of the monodromy. The formal definition can be found in [59, formula (37)].

  21. The interested reader can find a description of this condition in [32, 1.10]. It will be always satisfied by the log-schemes we work with in this paper.

  22. In general, in what follows we will use the brackets \([\ ]\) to denote derived eigenspaces and the brackets \((\ )\) or nothing to denote the non-derived ones.

  23. We call a \((\varphi ,N)\)-module Meffective if all the slopes of the Fobenius are \(\ge 0\).

  24. Which are called finite dimensional Banach Spaces in [14] and Banach–Colmez spaces in most of the literature.

  25. We note that \({{\mathscr {O}}}_K\) being syntomic over \({{\mathscr {O}}}_F\), all the integral complexes in sight are in fact p-torsion free.

  26. We take the version of the Fontaine–Messing period map that is compatible with Chern classes.

  27. Such complexes can be found, for example, by taking the system of étale hypercovers.

  28. This can be easily seen by looking locally at the de Rham complexes computing both sides.

  29. In fact, they are both isomorphic to the trivial complex.

  30. We note here that the conditions of that theorem are always satisfied for curves.

  31. For instance, for \(d=1\) this is the set of ends of the tree.

  32. Recall that if \(S_{{\scriptscriptstyle \bullet }}\) is any simplicial profinite set, then \(H^*(|S_{{\scriptscriptstyle \bullet }}|, {\mathbf {Z}})=H^*(\mathrm{LC}(S_{{\scriptscriptstyle \bullet }}, {\mathbf {Z}}))\), where \(|S_{{\scriptscriptstyle \bullet }}|\) is the geometric realisation of \(S_{{\scriptscriptstyle \bullet }}\) and \(\mathrm{LC}(S_{{\scriptscriptstyle \bullet }}, {\mathbf {Z}})\) is the complex \((\mathrm{LC}(S_s, {\mathbf {Z}}))_{s}\), the differentials being given by the alternating sum of the maps induced by face maps in S.

  33. We use unimodular representatives for points of projective space and for linear forms giving equations of H.

  34. This is allowable as all modules involved are finite over the Artinian ring A.

  35. Here and below, cohomology \(H^*\) without a subscript denotes Zariski cohomology. All the groups are profinite. This is because they are limits of cohomologies of the truncated log-schemes \(Y_s\) described below that are ideally log-smooth and proper.

  36. Do not confuse V with the Verschiebung in \(V^n\).

  37. of projective limits of \(\overline{k}\)-vector spaces of finite dimension.

  38. of projective limits of \(W_?(\overline{k})\)-modules, free and of finite rank.

  39. Strictly speaking, the quasi-isomorphisms in that proposition are modulo \(p^n\) but it is easy to get the p-adic result by going to the limit, using Mittag–Leffler as in Corollary 6.25.

References

  1. Bambozzi, F.: On a generalization of affinoid varieties. Ph.D. thesis, University of Padova. arXiv:1401.5702 [math.AG] (2013)

  2. Berkovich, V.: On the comparison theorem for étale cohomology of non-Archimedean analytic spaces. Israel J. Math. 92, 45–59 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berkovich, V.: Smooth \(p\)-adic analytic spaces are locally contractible. Invent. Math. 137, 1–84 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berkovich, V.: Complex analytic vanishing cycles for formal schemes, preprint

  5. Bhatt, B., Morrow, M., Scholze, P.: Integral \(p\)-adic Hodge theory. Publ. IHES 128, 219–397 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bhatt, B., Morrow, M., Scholze, P.: Topological Hochschild homology and integral \(p\)-adic Hodge theory. Publ. IHES 129, 199–310 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bloch, S., Kato, K.: \(p\)-adic étale cohomology. Publ. IHES 63, 107–152 (1986)

    Article  MATH  Google Scholar 

  8. Bloch, S., Kato, K.: \(L\)-functions and Tamagawa numbers of motives. The Grothendieck Festschrift, Vol. I, 333–400, Progr. Math. 86, Birkhäuser (1990)

  9. Boggi, M., Cook, G.C.: Continuous cohomology and homology of profinite groups. Doc. Math. 21, 1269–1312 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Borel, A., Wallach, N.: Continuous Cohomology, Discrete Subgroups, and Representations of Reductive groups. Mathematical Surveys and Monographs, vol. 67, 2nd edn. American Mathematical Society, New York (2000)

  11. Bosco, G.: \(p\)-adic cohomology of Drinfeld spaces, M2 thesis. Univ, Paris-sud (2019)

    Google Scholar 

  12. Česnavičius, K., Koshikawa, T.: The \(A_{{\rm inf}}\)-cohomology in the semistable case. Compositio Math. 155, 2039–2128 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chiarellotto, B., Le Stum, B.: Pentes en cohomologie rigide et F-isocristaux unipotents. Manuscr. Math. 100, 455–468 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Colmez, P.: Espaces de Banach de dimension finie. J. Inst. Math. Jussieu 1, 331–439 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Colmez, P.: Espaces vectoriels de dimension finie et représentations de de Rham. Astérisque 319, 117–186 (2008)

    MATH  Google Scholar 

  16. Colmez, P.: Représentations de \(GL_2({\mathbf{Q}}_p)\) et \((\phi,\Gamma )\)-modules. Astérisque 330, 281–509 (2010)

    Google Scholar 

  17. Colmez, P., Dospinescu, G., Nizioł, W.: Cohomologie \(p\)-adique de la tour de Drinfeld: le cas de la dimension 1. arXiv:1704.08928 [math.NT] (to appear in J. Amer. Math. Soc)

  18. Colmez, P., Dospinescu, G., Nizioł, W.: The integral \(p\)-adic étale cohomology of Drinfeld symmetric spaces. arXiv:1905.11495 [math.AG]

  19. Colmez, P., Dospinescu, G., Paškūnas, V.: The \(p\)-adic local Langlands correspondence for \(GL_2({\mathbf{Q}}_p)\). Camb. J. Math. 2, 1–47 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Colmez, P., Nizioł, W.: Syntomic complexes and \(p\)-adic nearby cycles. Invent. Math. 208, 1–108 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Colmez, P., Nizioł, W.: On the cohomology of the affine space. In: \(p\)-adic Hodge theory (2017), Simons Symposia, Springer (to appear). arXiv:1707.01133 [math.AG]

  22. de Shalit, E.: The \(p\)-adic monodromy-weight conjecture for \(p\)-adically uniformized varieties. Compos. Math. 141, 101–120 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Drinfeld, V.G.: Elliptic modules. Math. Sb. 94, 594–627 (1974)

    MathSciNet  Google Scholar 

  24. Drinfel’d, V.G.: Coverings of \(p\)-adic symmetric regions. Funct. Anal. Appl. 10(2), 107–115 (1976)

    Article  MATH  Google Scholar 

  25. Emerton, M.: Locally analytic vectors in representations of locally analytic \(p\)-adic groups. Mem. Am. Math. Soc. 248, 1175 (2017)

    MATH  Google Scholar 

  26. Fontaine, J.-M., Messing, W.: \(p\)-adic periods and \(p\)-adic étale cohomology. In: Ribet, K. (ed.) Current Trends in Arithmetical Algebraic Geometry, vol. 67, pp. 179–207. American Mathematical Society, New York (1987)

    Chapter  Google Scholar 

  27. Fresnel, J., van der Put, M.: Rigid Analytic Geometry and Its Applications, Progress in Mathematics, vol. 218. Birkäuser, Boston (2004)

    Book  MATH  Google Scholar 

  28. Gros, M.: Classes de Chern et classes de cycles en cohomologie de Hodge-Witt logarithmique. Mém. Soc. Math. France 21, 1–87 (1985)

    MathSciNet  MATH  Google Scholar 

  29. Grosse-Klönne, E.: Rigid analytic spaces with overconvergent structure sheaf. J. Reine Angew. Math. 519, 73–95 (2000)

    MathSciNet  MATH  Google Scholar 

  30. Grosse-Klönne, E.: De Rham cohomology of rigid spaces. Math. Z. 247, 223–240 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Grosse-Klönne, E.: Compactifications of log morphisms. Tohoku Math. J. 56, 79–104 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Grosse-Klönne, E.: Frobenius and monodromy operators in rigid analysis, and Drinfeld’s symmetric space. J. Algebraic Geom. 14, 391–437 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Grosse-Klönne, E.: Integral structures in the \(p\)-adic holomorphic discrete series. Represent. Theory 9, 354–384 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Grosse-Klönne, E.: Acyclic coefficient systems on buildings. Compos. Math. 141, 769–786 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Grosse-Klönne, E.: Sheaves of bounded \(p\)-adic logarithmic differential forms. Ann. Sci. École Norm. Sup. 40, 351–386 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Grosse-Klönne, E.: On special representations of \(p\)-adic reductive groups. Duke Math. J. 163, 2179–2216 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hyodo, O.: A note on \(p\)-adic étale cohomology in the semistable reduction case. Invent. Math. 91, 543–557 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hyodo, O., Kato, K.: Semi-stable reduction and crystalline cohomology with logarithmic poles. Astérisque 223, 221–268 (1994)

    MathSciNet  MATH  Google Scholar 

  39. Huber, R.: Étale Cohomology of Rigid Analytic Varieties and Adic Spaces. Aspects of Mathematics, E30, Friedr. Vieweg & Sohn, Braunschweig (1996)

  40. Illusie, L.: Complexe de de Rham-Witt et cohomologie cristalline. Ann. Sci. École Norm. Sup. 12, 501–661 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  41. Illusie, L., Raynaud, M.: Les suites spectrales associées au complexe de de Rham-Witt. Inst. Hautes Études Sci. Publ. Math. 57, 73–212 (1983)

    Article  MATH  Google Scholar 

  42. Illusie, L.: Ordinarité des intersections complètes générales. The Grothendieck Festschrift, Vol. II, 376–405, Progr. Math. 87, Birkhäuser (1990)

  43. Illusie, L.: On the category of sheaves of objects of \({\mathscr {D}}(R)\) (after Beilinson and Lurie), notes (2013)

  44. Iovita, A., Spiess, M.: Logarithmic differential forms on \(p\)-adic symmetric spaces. Duke Math. J. 110, 253–278 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kashiwara, M., Schapira, P.: Ind-sheaves. Astérisque 271, 136 (2001)

    Google Scholar 

  46. Kashiwara, M., Schapira, P.: Categories and sheaves. Grundlehren der Mathematischen Wissenschaften, vol. 332. Springer, Berlin (2006)

  47. Kato, K.: Semi-stable reduction and \(p\)-adic étale cohomology. Astérisque 223, 269–293 (1994)

    MATH  Google Scholar 

  48. Keller, B.: Derived categories and their uses. In: Handbook of Algebra, Vol. 1, pp. 671–701, Handb. Algebr., vol. 1. Elsevier, North-Holland (1996)

  49. Kato, K.: Logarithmic Structures of Fontaine–Illusie Algebraic Analysis, Geometry, and Number Theory (Baltimore, MD, 1988), pp. 191–224. Johns Hopkins University Press, Baltimore (1989)

  50. Langer, A., Muralidharan, A.: An analogue of Raynaud’s theorem: weak formal schemes and dagger spaces. Münster J. Math. 6, 271–294 (2013)

    MathSciNet  MATH  Google Scholar 

  51. Le Bras, A.-C.: Espaces de Banach-Colmez et faisceaux cohérents sur la courbe de Fargues-Fontaine. Duke Math. J. 167, 3455–3532 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  52. Lorenzon, P.: Logarithmic Hodge-Witt forms and Hyodo-Kato cohomology. J. Algebra 249, 247–265 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  53. Lurie, J.: Higher Topos Theory. Annals of Mathematics Studies, vol. 170. Princeton University Press, Princeton (2009)

  54. Lurie, J.: Higher Algebra, preprint

  55. Mangino, E.M.: (LF)-spaces and tensor products. Math. Nachr. 185, 149–162 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  56. Meredith, D.: Weak formal schemes. Nagoya Math. J. 45, 1–38 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  57. Mokrane, A.: La suite spectrale des poids en cohomologie de Hyodo-Kato. Duke Math. J. 72, 301–337 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  58. Nakkajima, Y.: \(p\)-adic weight spectral sequences of log varieties. J. Math. Sci. Univ. Tokyo 12, 513–661 (2005)

    MathSciNet  MATH  Google Scholar 

  59. Nekovář, J., Nizioł, W.: Syntomic cohomology and \(p\)-adic regulators for varieties over \(p\)-adic fields. Algebra Number Theory 10, 1695–1790 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  60. Ogus, A.: The convergent topos in characteristic \(p\). In: The Grothendieck Festschrift, vol. 3, pp. 133–162, Progress in Mathematics, 88, Birkhäuser (1990)

  61. Ogus, A.: Lectures on Logarithmic Algebraic Geometry. Cambridge Studies in Advanced Mathematics, vol. 178. Cambridge University Press, Cambridge (2018)

  62. Orlik, S.: Equivariant vector bundles on Drinfeld’s upper half space. Invent. Math. 172, 585–656 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  63. Orlik, S.: The de Rham cohomology of Drinfeld’s half space. Münster J. Math. 8, 169–179 (2015)

    MathSciNet  MATH  Google Scholar 

  64. Orlik, S.: The pro-étale cohomology of Drinfeld’s upper half space. arXiv:1908.10591 [math.NT] (2019)

  65. Orlik, S., Schraen, B.: The Jordan-Hölder series of the locally analytic Steinberg representation. Doc. Math. 19, 647–671 (2014)

    MathSciNet  MATH  Google Scholar 

  66. Orlik, S., Strauch, M.: On Jordan-Hölder series of some locally analytic representations. J. Am. Math. Soc. 28, 99–157 (2015)

    Article  MATH  Google Scholar 

  67. Perez-Garcia, C., Schikhof, W.H.: Locally Convex Spaces Over Non-Archimedean Valued Fields. Cambridge Studies in Advanced Mathematics, vol. 119. Cambridge University Press, Cambridge (2010)

  68. Prosmans, F.: Derived categories for functional analysis. Publ. Res. Inst. Math. Sci. 36, 19–83 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  69. Saito, T.: Weight spectral sequences and independence of \(\ell \). J. Inst. Math. Jussieu 2, 583–634 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  70. Schimann, J., Ferrier, G., Houzel, C.: In: Houzel, C. (ed.) Seminaire Banach. Lecture Notes in Mathematics, vol. 277. Springer (1972)

  71. Schneider, P., Stuhler, U.: The cohomology of \(p\)-adic symmetric spaces. Invent. Math. 105, 47–122 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  72. Schneider, P.: Nonarchimedean Functional Analysis. Springer Monographs in Mathematics. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  73. Schneiders, J.-P.: Quasi-Abelian Categories and Sheaves. Mém. Soc. Math. Fr. 76, (1999)

  74. Scholze, P.: \(p\)-adic Hodge Theory for Rigid-Analytic Varieties. Forum Math. Pi 1 , e1, 77 (2013)

  75. Shiho, A.: Crystalline fundamental groups. II. Log convergent cohomology and rigid cohomology. J. Math. Sci. Univ. Tokyo 9, 1–163 (2002)

  76. Shiho, A.: Relative log convergent cohomology and relative rigid cohomology I. arxiv:0707.1742v2 [math.NT]

  77. Shiho, A.: Relative log convergent cohomology and relative rigid cohomology II. arXiv:0707.1743 [math.NT]

  78. The Stacks project authors, The Stacks Project. http://stacks.math.columbia.edu (2018)

  79. Tsuji, T.: \(p\)-adic étale cohomology and crystalline cohomology in the semi-stable reduction case. Invent. Math. 137, 233–411 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  80. Varol, O.: On the derived tensor product functors for (DF)- and Fréchet spaces. Studia Math. 180, 41–71 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  81. Vezzani, A.: The Monsky-Washnitzer and the overconvergent realizations. Int. Math. Res. Not. IMRN 2018, 3443–3489 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  82. Vignéras, M.-F.: Représentations \(\ell \)-modulaires d’un groupe réductif \(p\)-adique avec \(\ell \ne p\). Progr. Math. 137. Birkhäuser (1996)

  83. Wengenroth, J.: Acyclic inductive spectra of Fréchet spaces. Studia Math. 120, 247–258 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  84. Witte, M.: On a localisation sequence for the K-theory of skew power series rings. J. K Theory 11, 125–154 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  85. Zheng, W.: Note on derived \(\infty \)-categories and monoidal structures, notes (2013)

Download references

Acknowledgements

This paper owes great deal to the work of Elmar Grosse-Klönne. We are very grateful to him for his patient and detailed explanations of the computations and constructions in his papers. We would like to thank Fabrizio Andreatta, Bruno Chiarellotto, Frédéric Déglise, Ehud de Shalit, Veronika Ertl, Laurent Fargues, Florian Herzig, Luc Illusie, Arthur-César Le Bras, Sophie Morel, Arthur Ogus, and Lue Pan for helpful conversations related to the subject of this paper. We also thank the referee for useful comments. This paper was partly written during our visits to the IAS at Princeton, the Tata Institute in Mumbai, Banach Center in Warsaw (P.C, W.N), BICMR in Beijing (P.C.), Fudan University in Shanghai (W.N.), Princeton University (W.N.), and the Mittag-Leffler Institute (W.N.). We thank these institutions for their hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Colmez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by the Project ANR-14-CE25 as well as by the Grant 346300 for IMPAN from the Simons Foundation and the matching 2015–2019 Polish MNiSW fund.

Alternative proof of Corollary 6.25

Alternative proof of Corollary 6.25

We present in this appendix an alternative proof of Corollary 6.25 (hence also of Proposition 6.23 which easily follows from it) that does not use the ordinarity of the truncated log-schemes \(Y_s\).

Let \(X/k^0\) be a fine log-scheme of Cartier type. Recall that we have the subsheaves

$$\begin{aligned} Z_{\infty }^j=\cap _{n\ge 0} Z_n^j, \quad B_{\infty }^j=\cup _{n\ge 0} B_n^j \end{aligned}$$

of \(\Omega ^j=\Omega ^j_{X/k^0}\) (in what follows we will omit the subscripts in differentials if understood). Via the maps \(C: Z_{n+1}^j\rightarrow Z_n^j\) (with kernels \(B_n^j\)), \(Z_{\infty }^j\) is the sheaf of forms \(\omega \) such that \(dC^n \omega =0\) for all n. This sheaf is acted upon by the Cartier operator C, and we recover

$$\begin{aligned} B_{\infty }^j=\cup _{n\ge 0} (Z_{\infty }^j)^{C^n=0}, \quad \Omega ^j_{\log }=(Z_{\infty }^j)^{C=1}. \end{aligned}$$

The following result is proved in [40, 2.5.3] for classically smooth schemes. It holds most likely in much greater generality than the one stated below, but this will be sufficient for our purposes.

Lemma A.1

Assume that \(X/k^0\) is semi-stable (with the induced log structure) and that k is algebraically closed. Then the natural map of étale sheaves

$$\begin{aligned} B_{\infty }^j\oplus (\Omega ^j_{\log }\otimes _{{\mathbf {F}}_p} k)\rightarrow Z_{\infty }^j \end{aligned}$$

is an isomorphism.

Proof

It suffices to show that, for X as above and affine, \(B_{\infty }^j(X)\oplus (\Omega ^j_{\log }(X)\otimes _{{\mathbf {F}}_p} k)\rightarrow Z_{\infty }^j(X)\) is an isomorphism. Take an open dense subset \(j: U\hookrightarrow X\) which is smooth over k. Then \(\Omega ^i_{X}\) is a subsheaf of \(j_*\Omega ^i_U\) and so \(Z^i_{\infty ,X}\) is a subsheaf of \(j_*Z^i_{\infty , U}\), giving an inclusion \(Z^i_{\infty , X}(X)\subset Z^i_{\infty , U}(U)\). By a result of Raynaud [40, Prop. 2.5.2], \(Z^i_{\infty , U}(U)\) is a union of finite dimensional k-vector spaces stable under C. We deduce that \(Z^i_{\infty , X}(X)\) is also such a union.

The result follows now from the following basic result of semi-linear algebra (this is where the hypothesis that k is algebraically closed is crucial): if E is a finite dimensional k-vector space stable under C, then \(E=E_{\mathrm{nilp}}\oplus E_{\mathrm{inv}}\), where \(E_{\mathrm{nilp}}=\cup _{n} E^{C^n=0}\), \(E_{\mathrm{inv}}=\cap _{n} C^n(E)\), and the natural map \(E^{C=1}\otimes _{{\mathbf {F}}_p} k\rightarrow E_{\mathrm{inv}}\) is an isomorphism. \(\square \)

Proof of Corollary 6.25

(1) We prove this in several steps. We start with the case \(i=0\) (the most delicate). By Lemma A.1,

$$\begin{aligned} H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y}, Z_{\infty }^j)\simeq H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y}, B_{\infty }^j)\oplus H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y}, \Omega ^j_{\log }\otimes _{{\mathbf {F}}_p} k). \end{aligned}$$

We need the following intermediate result:

Lemma A.2

We have \(H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y}, B_{\infty }^j)=0\).

Proof

We note that \(H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y}, B_n^j)=0\) for all n: because we have \(B^j_n\simeq B^j_{n+1}/B^j_1\) this follows from Lemma 6.13. This however does not allow us to deduce formally our lemma because \(B_{\infty }^j=\cup _{n} B_n^j\) and \(\overline{Y}\) is not quasi-compact. Instead, we argue as follows: the formation of the sheaves \(B_{\infty }^j\) being functorial, we have a natural map \(\alpha : H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y}, B_{\infty }^j)\rightarrow \prod _{C\in F^0} H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{C}, B_{\infty }^j)\). It suffices to prove that \(\alpha \) is injective and that \(H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{T}, B_{\infty }^j)=0\). To prove the injectivity of \(\alpha \), it suffices to embed both the domain and target of \(\alpha \) in \(H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y}, \Omega ^j)\) and \(\prod _{C} H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{C}, \Omega ^j)\), and to use the injectivity of the natural map \(H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y}, \Omega ^j)\rightarrow \prod _{C} H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{C}, \Omega ^j)\). Next, since \(\overline{T}\) is quasi-compact,

$$\begin{aligned} H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{T}, B_{\infty }^j)=\varinjlim _{n} H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{T}, B_n^j)=0, \end{aligned}$$

the second equality being a consequence of Proposition 6.3 and Lemma 6.13 (as above, in the case of \(\overline{Y}\)). \(\square \)

Consider now the sequence of natural maps

$$\begin{aligned} H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y}, \Omega ^j_{\log }){\widehat{\otimes }}_{{{\mathbf {F}}}_p}\overline{k}{\mathop {\rightarrow }\limits ^{\sim }} H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y}, \Omega ^j_{\log }\otimes _{{\mathbf {F}}_p} \overline{k}){\mathop {\rightarrow }\limits ^{\sim }} H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y}, Z_{\infty }^j) \rightarrow H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y}, \Omega ^j). \end{aligned}$$

The first map is clearly a topological isomorphism, the second one is a topological isomorphism by Lemma A.2. Hence it remains to show that the last map is a topological isomorphism as well. Or that all the natural maps \( H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y},Z^j_{n})\rightarrow H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y},\Omega ^j) \), \(n\ge 1\), are topological isomorphisms. But this was done in the proof of Lemma 6.20. This gives the desired result for \(i=0\).

We prove next the result for \(i>0\), i.e., that \(H^i_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y}, \Omega ^j_{\log })\widehat{\otimes }_{{\mathbf {F}}_p}\overline{k}=0\) for \(i\ge 1\). We start with showing that \(H^i_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y}, \Omega ^j_{\log })=0\). The exact sequence

yield the exact sequence

and \(H^i_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y}, \Omega ^j_{\log })=0\) for \(i>1\). It suffices therefore to prove that \(1-C^{-1}\) is surjective on \(H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y}, \Omega ^j)\). For this, write \(A_s=H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y}_s^{\circ }, \Omega ^j_{\log })\). As we have already seen, we have an isomorphism

$$\begin{aligned} H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y}, \Omega ^j)\simeq \varprojlim _s (A_s\otimes _{{\mathbf {F}}_p} \overline{k})=H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y}, \Omega ^j_{\log }){\widehat{\otimes }}_{{{\mathbf {F}}}_p}\overline{k}. \end{aligned}$$

We have \(C^{-1}=\varprojlim _{s}(1\otimes \varphi )\) (\(\varphi \) being the absolute Frobenius on \(\overline{k}\); note that \(C-1=0\) on \(A_s\)). To conclude that \(1-C^{-1}\) is surjective on \(H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y}, \Omega ^j)\), it suffices to pass to the limit in the exact sequences

$$\begin{aligned} 0\rightarrow A_s\rightarrow A_s\otimes _{{\mathbf {F}}_p} \overline{k}{\mathop {\longrightarrow }\limits ^{1-\varphi }} A_s\otimes _{{\mathbf {F}}_p} \overline{k}\rightarrow 0, \end{aligned}$$

whose exactness is ensured by the Artin-Schreier sequence for \(\overline{k}\) and the fact that \((A_s)_{s}\) is Mittag-Leffler.

This shows that \(H^i_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y}, \Omega ^j_{\log })=0\) for \(i>0\). Choosing a basis \((e_{\lambda })_{\lambda \in I}\) of \(\overline{k}\) over \({\mathbf {F}}_p\) we obtain an embedding

$$\begin{aligned} H^i_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y}, \Omega ^j_{\log }){\widehat{\otimes }}_{{{\mathbf {F}}}_p}\overline{k}\subset \prod _{\lambda \in I} H^i_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y}, \Omega ^j_{\log })=0, \end{aligned}$$

which finishes the proof of (1).

(2) We prove the claim for \(W_n\) by induction on n, the case \(n=1\) being part (1). We pass from n to \(n+1\) using the strictly exact sequences

$$\begin{aligned}&0\rightarrow H^0(\overline{Y}, \Omega ^j){\mathop {\rightarrow }\limits ^{V^n}} H^0(\overline{Y}, W_{n+1}\Omega ^j)\rightarrow H^0(\overline{Y}, W_n\Omega ^j)\rightarrow 0,\\&0\rightarrow H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y}, \Omega ^j_{\log }){\widehat{\otimes }}_{{{\mathbf {F}}}_p}\overline{k}{\mathop {\rightarrow }\limits ^{V^n}}H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y},W_{n+1}\Omega ^j_{\log }){\widehat{\otimes }}_{ {{\mathbf {Z}}} /p^{n+1}}W_{n+1}(\overline{k})\\&\quad \quad \quad \rightarrow H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y},W_{n}\Omega ^j_{\log }){\widehat{\otimes }}_{ {{\mathbf {Z}}} /p^n}W_n(\overline{k})\rightarrow 0, \end{aligned}$$

as well as the natural map between them. The first sequence is exact by Lemma 6.20. To show that the second sequence is exact, consider, as above, the exact sequences

$$\begin{aligned} 0\rightarrow H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y}_s^{\circ }, \Omega ^j_{\log }){\mathop {\rightarrow }\limits ^{V^n}} H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y}_s^{\circ }, W_{n+1}\Omega ^j_{\log })\rightarrow H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y}_s^{\circ }, W_n\Omega ^j_{\log })\rightarrow H^1_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y}_s^{\circ }, \Omega ^j_{\log }). \end{aligned}$$

Tensoring over \({\mathbf {Z}}\) by \(W_{n+1}(\overline{k})\), we can rewrite them as

$$\begin{aligned} 0\rightarrow H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y}_s^{\circ }, \Omega ^j_{\log })\otimes _{{\mathbf {F}}_p} \overline{k}&\rightarrow H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y}_s^{\circ }, W_{n+1}\Omega ^j_{\log })\otimes _{{\mathbf {Z}}/p^{n+1}} W_{n+1}(\overline{k})\\ \rightarrow&H^0_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y}_s^{\circ }, W_n\Omega ^j_{\log })\otimes _{{\mathbf {Z}}/p^n} W_n(\overline{k}) \rightarrow H^1_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y}_s^{\circ }, \Omega ^j_{\log })\otimes _{{\mathbf {F}}_p} \overline{k}. \end{aligned}$$

To lighten the notation, write them simply as \(0\rightarrow A_s\rightarrow B_s\rightarrow C_s\rightarrow D_s\). Using that \((A_s)_s, (C_s)_s\) are finite \(W_n(\overline{k})\)-modules and that \(\varprojlim _s D_s= H^1_{\acute{\mathrm{e}}\mathrm {t}}(\overline{Y}, \Omega ^j_{\log }){\widehat{\otimes }}_{{{\mathbf {F}}}_p}\overline{k}=0\) (as follows from (1)), we obtain the exact sequence

$$\begin{aligned} 0\rightarrow \varprojlim _s A_s\rightarrow \varprojlim _s B_s\rightarrow \varprojlim _s C_s\rightarrow 0, \end{aligned}$$

which finishes the proof of (2) for \(W_n\), \(n\ge 1\). Passing to the limit over n gives us the proof for W. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colmez, P., Dospinescu, G. & Nizioł, W. Cohomology of p-adic Stein spaces. Invent. math. 219, 873–985 (2020). https://doi.org/10.1007/s00222-019-00923-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-019-00923-z

Mathematics Subject Classification

Navigation