Skip to main content
Log in

Chemical changes during the production of thermo-treated beech wood

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Thermal treatments of beech wood with different temperature loads on the wood cause characteristic changes in the chemical composition. The determination of specific changes was carried out by means of suitable methods, both wet chemical and instrumental analyses. It could be confirmed that in addition to the degradation of polyoses, lignin, known as the thermally most stable compound, shows significant thermal alterations too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ayadi N, Lejeune F, Charrier F, Charrier B, Merlin A (2003) Color stability of heat-treated wood during artificial weathering. Holz Roh- Werkst 61:221–226

    CAS  Google Scholar 

  • Boonstra M, Pizzi A, Zomers F, Ohlmeyer M, Paul W (2006a) The effects of a two stage heat treatment process on the properties of particleboard. Holz Roh- Werkst 64:157–164

    Article  CAS  Google Scholar 

  • Boonstra M, van Acker J, Kegel E, Stevens M (2006b) Optimisation of a two-stage heat treatment process: durability aspects. Wood Sci Technol 41:31–57

    Article  CAS  Google Scholar 

  • Faix O (1992) Fourier transform infrared spectroscopy. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Berlin, pp 83–109

    Google Scholar 

  • Fengel D, Wegener G (1979) Hydrolysis of polysaccharides with trifluoroacetic acid and its application to rapid wood and pulp analysis. In: Brown Jr RD, Jurasek L (eds) Hydrolysis of cellulose: mechanisms of enzymatic and acid catalysis (Adv. Chem. Ser. No. 181 ACS), pp 145–158

  • Fengel D, Wegener G (2003) Wood: chemistry, ultrastructure, reactions. Reprint Kessel, http://www.forstbuch.de, Remagen

  • Follrich J, Müller U, Gindl W (2006) Effects of thermal modification on the adhesion between spruce wood (Picea abies Karst.) and a thermoplastic polymer. Holz Roh- Werkst 64:373–376

    Article  CAS  Google Scholar 

  • Haw JF, Schultz TP (1985) Carbon-13CP/MAS NMR and FT-IR study of low-temperature lignin pyrolysis. Holzforschung 39:289–296

    CAS  Google Scholar 

  • Kacik F, Melcer I, Melcerová A (1992) Vergleichende Charakteristik einer hydrothermischen und thermischen Behandlung von Buchenholz. Holz Roh- Werkst 50:79–84

    CAS  Google Scholar 

  • Kamdem D, Pizzi A, Jermannaud A (2002) Durability of heat-treated wood. Holz Roh- Werkst 60:1–6

    Article  CAS  Google Scholar 

  • Kotilainen RA, Toivanen TJ, Alén RJ (2000) FTIR monitoring of chemical changes in softwood during heating. J Wood Chem Technol 20:307–320

    Article  CAS  Google Scholar 

  • Lapierre C, Monties B, Rolando C (1986) Thioacidolysis of popular lignins: identification of monomeric syringyl products and characterization of guaiacyl–syringyl lignin fractions. Holzforschung 40:113–118

    CAS  Google Scholar 

  • Månsson P (1983) Quantitative determination of phenolic and total hydroxyl groups in lignin. Holzforschung 37:143–146

    Article  Google Scholar 

  • Månsson P, Samuelsson B (1981) Quantitative determination of O-acetyl and other O-acyl groups in cellulosic material. Svensk Papperstidning 84:R15–R24

    Google Scholar 

  • Marques AV, Pereira H, Meier D, Faix O (1999) Structural Characterization of cork lignin by thioacidolysis and permanganate oxidation. Holzforschung 53:167–174

    Article  CAS  Google Scholar 

  • Nakano T, Miyazaki J (2003) Surface fractal dimensionality and hygroscopicity for heated wood. Holzforschung 57:289–294

    Article  CAS  Google Scholar 

  • Nuopponen M, Vuorinen T, Jämsä S, Viitaniemi P (2004) Thermal modifications in softwood studied by FT-IR and UV resonance raman spectroscopies. J Wood Chem Technol 24:13–26

    Article  CAS  Google Scholar 

  • Önnerud H, Gellerstedt G (2003) Inhomogeneities in chemical structure of hardwood lignins. Holzforschung 57:255–265

    Article  Google Scholar 

  • Paul W, Ohlmeyer M, Leithoff H (2007) Thermal modification of OSB-strands by a one-step heat pre-treatment—influence of temperature on weight loss, hygroscopicity and improved fungal resistance. Holz Roh- Werkst 65:57–63

    Article  CAS  Google Scholar 

  • Pietarinen S, Willför S, Sjöholm R, Holmbom B (2005) Bioactive phenolic substances in important tree species. Part 3. Knots and stemwood of Acacia crassicarpa and A. mangium. Holzforschung 59:94–101

    Article  CAS  Google Scholar 

  • Rolando C, Monties B, Lapierre C (1992) Thioacidolysis. In: Lin SY, Dence CW (eds) Methods in lignin chemistry, Springer, Berlin, pp 334–349

    Google Scholar 

  • Sivonen H, Maunu S, Sundholm F, Jämsä S, Viitaniemi P (2002) Magnetic resonance studies of thermally modified wood. Holzforschung 56:648–654

    Article  CAS  Google Scholar 

  • Stamm B, Windeisen E, Natterer J, Wegener G (2006) Chemical investigations on the thermal behaviour of wood during friction welding. Wood Sci Technol 40:615–627

    Article  CAS  Google Scholar 

  • Tjeerdsma BF, Boonstra M, Pizzi A, Tekely P, Militz H (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz Roh- Werkst 56:149–153

    Article  CAS  Google Scholar 

  • Ucar G, Meier D, Faix O, Wegener G (2005) Analytical pyrolysis and FTIR spectroscopy of fossil Sequoiadendron giganteum (Lindl.) wood and MWLs isolated hereof. Holz Roh- Werkst 63:57–63

    Article  CAS  Google Scholar 

  • Weiland J, Guyonnet R (2003) Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holz Roh- Werkst 61:216–220

    CAS  Google Scholar 

  • Wienhaus O (1999) Modifizierung des Holzes durch eine milde Pyrolyse – abgeleitet aus den allgemeinen Prinzipien der Thermolyse des Holzes. Wissenschaftl Zeitschr Univ Dresden 48:17–22

    CAS  Google Scholar 

  • Windeisen E, Wegener G (2005) Behaviour of lignin during thermal treatments. Proceedings of 7th ILI Forum, Barcelona 27–28 April, pp 141–143

  • Windeisen E, Strobel C, Wegener G (2003) Chemische Charakterisierung von thermisch belastetem Holz: Bestimmung des Acetylgruppengehalts und FTIR Spektroskopie. Holz Roh- Werkst 61:471–472

    Article  Google Scholar 

  • Zaman A, Alén R, Kotilainen R (2000) Thermal behaviour of Scots pine (Pinus sylvestris) and silver birch (Betula pendula) at 200–230°C. Wood Fibre Sci 32:138–143

    CAS  Google Scholar 

Download references

Acknowledgments

Special thanks are due to Prof. Dr. Bernhard Zimmer (FH Salzburg) for providing the wood samples and in particular to Astrid Thönnißen at Wood Research Munich for performing part of the chemical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Windeisen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Windeisen, E., Strobel, C. & Wegener, G. Chemical changes during the production of thermo-treated beech wood. Wood Sci Technol 41, 523–536 (2007). https://doi.org/10.1007/s00226-007-0146-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-007-0146-5

Keywords

Navigation