Skip to main content
Log in

Moisture-dependent orthotropic elasticity of beech wood

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Elastic material properties are one of the most important material characteristics in mechanical modelling. Wood with distinctively different properties in the longitudinal, radial and tangential directions exhibits a strong moisture-dependent material characteristic in the elastic range. In order to characterise beech wood as an orthotropic material, all of the independent elastic properties were determined at different moisture conditions. These characteristic properties have never been determined before as a function of moisture content yet are vital to the field of wood modelling. All elastic parameters, except for some Poisson’s ratios, show a decrease in stiffness with increasing moisture content. In comparison to available literature references at a moisture content of ω ≈ 12%, the identified values were of the same order of magnitude. The determined material properties can be used to investigate the mechanical behaviour of beech wood structures including different moisture conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arcan M, Hashin Z, Voloshin A (1978) A method to produce uniform plane-stress states with applications to fiber-reinforced materials. Exp Mech 18(4):141–146

    Article  Google Scholar 

  • Bodig J, Jayne BA (1993) Mechanics of wood and wood composites. Krieger Publishing Company, New York

    Google Scholar 

  • Bucur V (1995) Acoustics of wood. CRC Press, Boca Raton

    Google Scholar 

  • Bucur V, Archer RR (1984) Elastic constants for wood by an ultrasonic method. Wood Sci Technol 18:255–265

    Article  Google Scholar 

  • Dahl KB, Malo KA (2009a) Linear shear properties of spruce softwood. Wood Sci Technol 43(5–6):499–525

    Article  CAS  Google Scholar 

  • Dahl KB, Malo KA (2009b) Nonlinear shear properties of spruce softwood:experimental results. Wood Sci Technol 69(13):2144–2151

    Google Scholar 

  • DIN V 65352 (1987) Verfahren zur statistischen Auswertung der Prüfergebnisse bei der Qualifikations- und Abnahmeprüfung von Faserverbundwerkstoffen. DIN Deutsches Institut für Normung e. V

  • Diot S, Guines D, Gavrus A, Ragneau E (2008) Minimization of friction influence on the evaluation of rheological parameters from compression test—application to a forging steel behavior identification. J Eng Mater T ASME 131(1):10

    Google Scholar 

  • Dumail JF, Oloffson K, Salmén L (2000) An analysis of rolling shear of spruce wood by the Iosipescu method. Holzforschung 54:420–426

    Article  CAS  Google Scholar 

  • Garab J, Keunecke D, Hering S, Szalai J, Niemz P (2010) Measurement of standard and off-axis elastic moduli and Poisson’s ratios of spruce and yew wood in the transverse plane. Wood Sci Technol 44(3):451–464

    Article  CAS  Google Scholar 

  • Grimsel M (1999) Mechanisches Verhalten von Holz. Dissertation, Dresden, p 89

  • Guitard D, Amri FE (1987) Tridimensional elastic behavior predicting models for hardwood and softwood (in French). Ann Sci Forest 44:335–358

    Article  Google Scholar 

  • Hearmon RFS, Barkas WW (1941) The effect of grain direction on the Young’s moduli and rigidity moduli of beech and Sitka spruce. In: Proceedings of the physical society

  • Hörig H (1933) Zur Elastizität des Fichtenholzes. Z Tech Phys 12:369–379

    Google Scholar 

  • Hörig H (1935) Anwendung der Elastizitätstheorie anisotroper Körper auf Messungen an Holz. Arch Appl Mech 6(1):8–14

    Google Scholar 

  • Iosipescu N (1967) New accurate procedure for single shear testing of metals. J Mater 2:537

    Google Scholar 

  • Keunecke D, Sonderegger W, Pereteanu K, Lüthi T, Niemz P (2007) Determination of Young’s and shear moduli of common yew and Norway spruce by means of ultrasonic waves. Wood Sci Technol 41(4):309–327

    Article  CAS  Google Scholar 

  • Keunecke D, Hering S, Niemz P (2008) Three-dimensional elastic behaviour of common yew and Norway spruce. Wood Sci Technol 42(8):633–647

    Article  CAS  Google Scholar 

  • Keylwerth R (1951) Die anisotrope Elastizität des Holzes und der Lagenhölzer. Verlag des Vereins Deutscher Ingenieure—VDI-Forschungsheft 430

  • Kollmann F (1951) Technologie des Holzes und der Holzwerkstoffe. Springer, Berlin

    Google Scholar 

  • Neuhaus FH (1981) Elastizitätszahlen von Fichtenholz in Abhängigkeit von der Holzfeuchtigkeit. Dissertation, Bochum, p 162

  • Neuhaus FH (1983) Über das elastische Verhalten von Fichtenhoiz in Abhängigkeit von der Holzfeuchtigkeit. Holz Roh Werkst 41:21–25

    Article  Google Scholar 

  • Neumann AJ (1998) Ermittlung und Bewertung der elastischen Materialkennwerte von Vollholz in Abhängigkeit der Feuchte und der Anisotropie. Master Thesis, Dresden, p 87

  • Niemz P (1993) Physik des Holzes und der Holzwerkstoffe. DRW-Verlag Weinbrenner GmbH & Co

  • Niemz P, Caduff D (2008) Research into determination of the Poisson ratio of spruce wood. Holz Roh Werkst 66(1):1–4

    Article  Google Scholar 

  • Pozgaj A, Chovanec D, Kuriatko S, Babiak M (1993) Štruktúra a vlastnosti dreva (Wood structure and properties). Príroda, Bratislava

    Google Scholar 

  • Stamer J (1935) Elastizitätsuntersuchungen an Hölzern. Arch Appl Mech 6(1):1–8

    Google Scholar 

  • Stamer J, Sieglerschmidt H (1933) Elastische Formänderung der Hölzer. Zeitschrift des Vereins Deutscher Ingenieure 77(19):503–505

    Google Scholar 

  • van Mier JGM (1997) Fracture processes of concrete: assessment of material parameters for fracture models. CRC Press, Boca Raton

    Google Scholar 

  • Wommelsdorf O (1966) Dehnungs- und Querdehnungszahlen von Hölzern. Dissertation, Hannover, p 100

Download references

Acknowledgments

This work was funded by the State Secretariat for Education and Research of Switzerland (SER) and supported by the European Cooperation in the field of Scientific and Technical Research (COST, Action E53).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hering.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hering, S., Keunecke, D. & Niemz, P. Moisture-dependent orthotropic elasticity of beech wood. Wood Sci Technol 46, 927–938 (2012). https://doi.org/10.1007/s00226-011-0449-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-011-0449-4

Keywords

Navigation