Skip to main content
Log in

A review of wood thermal pretreatments to improve wood composite properties

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

An Erratum to this article was published on 05 September 2013

Abstract

The objective of this paper is to review the published literature on improving properties of wood composites through thermal pretreatment of wood. Thermal pretreatment has been conducted in moist environments using hot water or steam at temperatures up to 180 and 230 °C, respectively, or in dry environments using inert gases at temperatures up to 240 °C. In these conditions, hemicelluloses are removed, crystallinity index of cellulose is increased, and cellulose degree of polymerization is reduced, while lignin is not considerably affected. Thermally modified wood has been used to manufacture wood–plastic composites, particleboard, oriented strand board, binderless panels, fiberboard, waferboard, and flakeboard. Thermal pretreatment considerably reduced water absorption and thickness swelling of wood composites, which has been attributed mainly to the removal of hemicelluloses. Mechanical properties have been increased or sometimes reduced, depending on the product and the conditions of the pretreatment. Thermal pretreatment has also shown to improve the resistance of composites to decay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acharjee TC, Coronella CJ, Vasquez VR (2011) Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass. Bioresource Technol 102:4849–4854

    Article  CAS  Google Scholar 

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685

    Article  PubMed  CAS  Google Scholar 

  • Alén R (2000) Structure and chemical composition of wood. In: Gullichsen J et al (eds) Forest products chemistry, papermaking science and technology 3. Fapet, Jyväskylä, pp 11–57

    Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource Technol 101:4851–4861

    Article  CAS  Google Scholar 

  • Amidon T, Liu S (2009) Water-based woody biorefinery. Biotechnol Adv 27:542–550

    Article  PubMed  CAS  Google Scholar 

  • Amidon TE, Wood CD, Shupe AM, Wang Y, Graves M, Liu S (2008) Biorefinery: conversion of woody biomass to chemicals, energy and materials. J Biobased Mater Bio 2:100–120

    Article  Google Scholar 

  • Andrusyk L, Oporto GS, Gardner DJ, Neivandt DJ (2008) Wood plastic composites manufactured from hot water extracted wood. Part I: mechanical evaluation. In: Proceedings of the 51st international convention of society of wood science and technology, November 10–12, Concepción, Chile

  • Angles NM, Salvado J, Dufresne A (1999) Steam-exploded residual softwood-filled polypropylene composites. J Appl Polym Sci 74:1962–1977

    Article  CAS  Google Scholar 

  • Angles MN, Ferrando F, Farriol X, Salvado J (2001) Suitability of steam exploded residual softwood for the production of binderless panels. Effect of the pre-treatment severity and lignin addition. Biomass Bioenerg 21:211–224

    Article  CAS  Google Scholar 

  • Asplund AJA (1935) Method of manufacture of pulp. US Patent 2008892

  • Ates S, Akyildiz MH, Ozdemir H (2009) Effects of heat treatment on calabrian pine (Pinus brutia ten.) wood. Bioresources 4(3):1032–1043

    CAS  Google Scholar 

  • Ayrilmis N, Winandy JE (2009) Effects of post heat-treatment on surface characteristics and adhesive bonding performance of medium density fiberboard. Mater Manuf Process 24:594–599

    Article  CAS  Google Scholar 

  • Ayrilmis N, Laufenberg TL, Winandy JE (2009) Dimensional stability and creep behavior of heat-treated exterior medium density fiberboard. Eur J Wood Prod 67:287–295

    Article  CAS  Google Scholar 

  • Ayrilmis N, Jarusombuti S, Fueangvivat V, Bauchongkol P (2011a) Effect of thermal-treatment of wood fibres on properties of flat-pressed wood plastic composites. Polym Degrad Stabil 96:818–822

    Article  CAS  Google Scholar 

  • Ayrilmis N, Jarusombuti S, Fueangvivat V, Bauchongkol P (2011b) Effects of thermal treatment of rubberwood fibres on physical and mechanical properties of medium density fibreboard. J Trop For Sci 23(1):10–16

    Google Scholar 

  • Back EL (1987) The bonding mechanism in hardboard manufacture. Holzforschung 41:247–258

    Article  CAS  Google Scholar 

  • Baddam RR (2006) Anaerobic fermentation of hemicellulose present in green liquor and hot water extracts to carboxylic acids. Master’s Thesis, University of Maine

  • Bain RL, Overend RP, Craig KR (1998) Biomass-fired power generation. Fuel Process Technol 54:1–16

    Article  CAS  Google Scholar 

  • Bellais M, Davidsson KO, Liliedahl T, Sjöström K, Pettersson JBC (2003) Pyrolysis of large wood particles: a study of shrinkage importance in simulations. Fuel 82:1541–1548

    Article  CAS  Google Scholar 

  • Bergman PCA, Kiel JHA (2005) Torrefaction for biomass upgrading. Energy Research Centre of the Netherlands (ECN), Unit ECN Biomass ECN Report: ECN-RX-05-180, 14th European biomass conference & exhibition, Paris, 17–21 October

  • Bergman PCA, Boersma AR, Zwart RWH, Kiel JHA (2005) Torrefaction for biomass co-firing in existing coal-fired power stations. Report ECN-C-05-013, ECN, Petten, Netherlands

  • Bhuiyan TR, Hirai N, Sobue N (2000) Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. J Wood Sci 46:431–436

    Article  CAS  Google Scholar 

  • Bhuiyan RT, Hirai N, Sobue N (2001) Effect of intermittent heat treatment on crystallinity in wood cellulose. J Wood Sci 47:336–341

    Article  CAS  Google Scholar 

  • Bobleter O, Bonn G (1983) The hydrothermolysis of cellobiose and its reaction product d-glucose. Carbohyd Res 124:185–193

    Article  CAS  Google Scholar 

  • Bobleter O, Niesner R, Röhr M (1976) The hydrothermal degradation of cellulosic matter to sugars and their fermentative conversion to protein. J Appl Polym Sci 20(8):2083–2093

    Article  CAS  Google Scholar 

  • Bobleter D, Bonn G, Prutsch W (1991) Steam explosion-hydrothermolysis-organosolv. A comparison. In: Focher et al (eds) Steam explosion techniques. Fundamentals and Industrial Applications, Gordon and Breach Science Publishers, Amsterdam, pp 59–82

  • Boehm RM (1930) The Masonite process. Ind Eng Chem 22(5):493–497

    Article  CAS  Google Scholar 

  • Boehm RM (1936) Making board products and recovering water solubles from fibrous ligno-cellulose material. US Patent No. 2224135

  • Boonstra MJ (2008) A two-stage thermal modification of wood. Ph.D. dissertation in cosupervision Ghent University and Université Henry Poincaré, Nancy 1

  • Boonstra MJ, Tjeerdsma B (2006) Chemical analysis of heat treated softwoods. Holz Roh Werkst 64:204–211

    Article  CAS  Google Scholar 

  • Boonstra MJ, Pizzi A, Zomers F, Ohlmeyer F, Paul W (2006) The effects of a two stage heat treatment process on the properties of particleboard. Holz Roh Werkst 64:157–164

    Article  CAS  Google Scholar 

  • Borrega M, Kärenlampi PP (2008) Mechanical behavior of heat-treated spruce (Picea abies) wood at constant moisture content and ambient humidity. Holz Roh Werkst 66:63–69

    Article  CAS  Google Scholar 

  • Borysiuk P, Mamiński M, Grześkiewicz M, Parzuchowski P, Mazurek A (2007) Thermally modified wood as raw material for particleboard manufacture. In: The third European conference on wood modification, Cardiff, UK, 15–16th October

  • Bouajila J, Limare A, Joly C, Dole P (2005) Lignin plasticization to improve binderless fiberboard mechanical properties. Polym Eng Sci 45(6):809–816

    Article  CAS  Google Scholar 

  • Bouteille J (1939) Improvement of wood torrefaction ovens (In French). French Patent FR 839732

  • Bowyer JL, Shmulsky R, Haygreen JG (2007) Forest products and wood science: an introduction, 5th edn. Blackwell Publishing, Ames

    Google Scholar 

  • Brebu M, Vasile C (2010) Thermal degradation of lignin. A review. Cellulose Chem Technol 44(9):353–363

    CAS  Google Scholar 

  • Bridgeman TG, Jones JM, Williams A, Waldron DJ (2010) An investigation of the grind ability of two torrefied energy crops. Fuel 89:3911–3918

    Article  CAS  Google Scholar 

  • Broido A, Javier-Son AC, Ouano AC, Barrall EM (1973) Molecular weight decrease in the early pyrolysis of crystalline and amorphous cellulose. J Appl Polym Sci 17:3625–3627

    Article  Google Scholar 

  • Brown RC, Holmgren J (2006) Fast pyrolysis and bio-oil upgrading. Chicago section AIChE symposium October 11, 2006, http://www.ascension-publishing.com/BIZ/HD50.pdf, Accessed 10 March 2012

  • Byrd VL (1979) Press drying. Flow and adhesion of hemicellulose and lignin. Tappi 62(7):81–84

    Google Scholar 

  • Carvalheiro F, Duarte LC, Girio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res India 67:849–864

    CAS  Google Scholar 

  • Casebier RL, Hamilton JK, Hergert HL (1969) Chemistry and mechanism of water prehydrolysis on southern pine wood. Tappi 52(12):2368–2377

    Google Scholar 

  • Chaffee TL (2011) Potential for enhanced properties of wood products by hot water extraction of low-value, undebarked ponderosa pine. Master’s Thesis, College of Environmental Science and Forestry, State University of New York, Syracuse

  • Chen W-H, Kuo P-C (2010) A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy 35:2580–2586

    Article  CAS  Google Scholar 

  • Chiaramonti D, Rizzo AM, Prussi M, Tedeschi S, Zimbardi F, Braccio G et al (2011) 2nd generation lignocellulosic bioethanol: is torrefaction a possible approach to biomass pretreatment? Biomass Conv Bioref 1(1):9–15

    Article  CAS  Google Scholar 

  • Chirkova J, Andersone I, Irbe I, Spince B, Andersons B (2011) Lignins as agents for bio-protection of wood. Holzforschung 65(4):497–502

    Article  CAS  Google Scholar 

  • Choong ET (1969) Effect of extractives on shrinkage and other hygroscopic properties of ten Southern pine woods. Wood Fiber Sci 1(2):124–133

    Google Scholar 

  • Christensen GN, Kelsey KE (1959) Die Sorption von Wasserdampf durch die chemischen Bestandteile des Holzes. Holz Roh Werkst 17:189–203

    Article  Google Scholar 

  • Ciolkosz D, Wallace R (2011) A review of torrefaction for bioenergy feedstock production. Biofuel Bioprod Bior 5:317–329

    Article  CAS  Google Scholar 

  • Clemons CM (2010) Wood flour. In: Xanthos M (ed) Functional fillers for plastics, 2nd edn. Wiley-VCH, Weinheim, pp 269–290

    Chapter  Google Scholar 

  • Couhert C, Salvador S, Commandré JM (2009) Impact of torrefaction on syngas production from wood. Fuel 88:2286–2290

    Article  CAS  Google Scholar 

  • Degroot WF, Pan WP, Rahman MD, Richards GN (1988) First chemical events in pyrolysis of wood. J Anal Appl Pyrol 13(3):221–231

    Article  CAS  Google Scholar 

  • Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crop Prod 33:259–276

    Article  CAS  Google Scholar 

  • Donohoe BS, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2008) Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol Bioeng 101(5):913–925

    Article  PubMed  CAS  Google Scholar 

  • Duarte GV, Ramarao BV, Amidon TE, Ferreira PT (2011) Effect of hot water extraction on hardwood kraft pulp fibers (Acer saccharum, Sugar Maple). Ind Eng Chem Res 50:9949–9959

    Article  CAS  Google Scholar 

  • Dubey MK, Pang S, Walker J (2012) Changes in chemistry, color, dimensional stability and fungal resistance of Pinus radiata D. Don wood with oil heat-treatment. Holzforschung 66:49–57

    Article  CAS  Google Scholar 

  • Eckelman CA (1998) The shrinking and swelling of wood and its effect on furniture. Forest Natural Resources 163:1–26

    Google Scholar 

  • Espinoza-Herrera R, Cloutier A (2008) Compatibility of four Eastern Canadian woods with gypsum and gypsum-cement binders by isothermal calorimetry. Maderas-Cienc Tecnol 10(3):275–288

    Google Scholar 

  • Esteves BM, Pereira HM (2009) Wood modification by heat treatment: a review. Bioresources 4(1):370–404

    CAS  Google Scholar 

  • Falco C, Caballero FP, Babonneau F, Gervais C, Laurent G, Titirici M-M, Baccile N (2011) Hydrothermal carbon from biomass: structural differences between hydrothermal and pyrolyzed carbons via 13C Solid State NMR. Langmuir 27:14460–14471

    Article  PubMed  CAS  Google Scholar 

  • Fang C-H, Cloutier A, Blanchet P, Koubaa A, Mariotti N (2011) Densification of wood veneers combined with oil-heat treatment. Part I: dimensional stability. BioResources 6(1):373–385

    CAS  Google Scholar 

  • Fang C-H, Cloutier A, Blanchet P, Koubaa A (2012) Densification of wood veneers combined with oil-heat treatment. Part II: hygroscopicity and mechanical properties. BioResources 7(1):925–935

    CAS  Google Scholar 

  • Farmer RH (1967) Chemistry in the utilization of wood. Pergamon Press, London

    Google Scholar 

  • Fatehi P, Ni Y (2011) Integrated forest biorefinery–prehydrolysis/dissolving pulping process. In Zhu J et al (eds) Sustainable production of fuels, chemicals, and fibers from forest biomass. ACS Symposium Series; American Chemical Society, Washington, DC

  • Fengel D, Wegener G (1989) Wood. Chemistry, ultrastructure, reactions. Water de Gruyter, Berlin

  • Focher B, Marzetti A, Beltrame PL, Avella M (1998) Steam exploded biomass for the preparation of conventional and advanced biopolymer-based materials. Biomass Bioenergy 14(3):187–194

    Article  CAS  Google Scholar 

  • Follrich J, Müller U, Gindl W, Mundigler N (2010) Effects of long-term storage on the mechanical characteristics of wood plastic composites produced from thermally modified wood fibers. J Thermoplast Compos 23:845–853

    Article  Google Scholar 

  • Fonseca F, Luengo CA, Suarez JA, Beaton PA (2005) Wood briquette torrefaction. Energy Sustain Dev 9(3):19–22

    Article  Google Scholar 

  • Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuel Bioprod Bior 4(2):160–177

    Article  CAS  Google Scholar 

  • Garcia RA, Cloutier A, Riedl B (2006) Dimensional stability of MDF panels produced from heat-treated fibres. Holzforschung 60(3):278–284

    Article  CAS  Google Scholar 

  • Garrote G, Dominguez H, Parajo JC (1999) Hydrothermal processing of lignocellulosic materials. Holz Roh Werkst 57:191–202

    Article  CAS  Google Scholar 

  • Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresource Technol 101:4775–4800

    Article  CAS  Google Scholar 

  • Glasser WG, Barnett CA, Muller PC, Sarkanen KV (1983) The chemistry of several novel bioconversion lignins. J Agr Food Chem 31(5):921–930

    Article  CAS  Google Scholar 

  • Gohar P, Guyonnet R (1998) Development of the retification process of wood at the industrial scale. The challenge safety and environment in wood preservation: (Cannes-Mandelieu, 2–3 Feb. 1998) Wood preservation. International symposium No. 4, Cannes-Mandelieu, France, pp 174–183

  • Hakkou M, Pétrissans M, Gérardin P, Zoulalian A (2006) Investigations of the reasons for fungal durability of heat-treated beech wood. Polym Degrad Stabil 91:393–397

    Article  CAS  Google Scholar 

  • Hann RA (1965) Process for reducing springback in pressed wood products. US Patent No. 3173460, March 16th, 1965

  • Hansen KK (1986) Sorption isotherms. A catalogue. Technical Report 162/86, Department of Civil Engineering, The Technical University of Denmark

  • Harris EE (1952) Wood hydrolysis. In: Wise LE, Jahn EC (eds) Wood chemistry, vol 2, 2nd edn. Reinhold Publishing Corporation, New York

  • Heitz M, Carrasco F, Rubio M, Chauvette G, Chornet E, Jaulin L, Overend RP (1986) Generalized correlations for the aqueous liquefaction of lignocellulosics. Can J Chem Eng 64:647–650

    Article  CAS  Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technol 100:10–18

    Article  CAS  Google Scholar 

  • Henuningson JA, Newman RH (1985) A CP/MAS 13C NMR study of the effect of steam explosion processes on wood composition and structure. J Wood Chem Technol 5(2):159–188

    Article  Google Scholar 

  • Hietala S, Maunu SL, Sundholm F, Jämsä S, Viitaniemi P (2002) Structure of thermally modified wood studied by liquid state NMR measurements. Holzforschung 56(5):522–528

    Article  CAS  Google Scholar 

  • Hill C (2006) Wood modification. Chemical, thermal and other processes. Wiley, Chichester

  • Hill CAS, Xie Y-J (2010) The water vapour sorption kinetics of Sitka spruce at different temperatures analysed using the parallel exponential kinetics model. The Future of Quality Control for Wood & Wood Products’, 4–7th May 2010, Edinburgh The Final Conference of COST Action E53

  • Hill CAS, Ramsay J, Keating B, Laine K, Rautkari L, Hughes M, Constant B (2012) The water vapour sorption properties of thermally modified and densified wood. J Mater Sci 47:3191–3197

    Article  CAS  Google Scholar 

  • Hillis WE (1972) Review article formation and properties of some wood extractives. Phytochemistry 11:1207–1218

    Article  CAS  Google Scholar 

  • Hillis WE (1984) High temperature and chemical effects on wood stability. Part 1: general considerations. Wood Sci Technol 18:281–293

    Article  CAS  Google Scholar 

  • Hoekman SK, Broch A, Robbins C (2011) Hydrothermal carbonization (HTC) of lignocellulosic biomass. Energ Fuels 25:1802–1810

    Article  CAS  Google Scholar 

  • Hörmeyer HF, Tailliez P, Millet J, Girard H, Bonn G, Bobleter O, Aubert JP (1988) Ethanol production by Clostridium thermocellum grown on hydrothermally and organosolv-pretreated lignocellulosic materials. Appl Microbiol Biot 29(6):528–535

    Article  Google Scholar 

  • Horn RA (1979) Bonding in press-dried sheets from high-yield pulps. The role of lignin and hemicellulose. Tappi 62(7):77–80

    Google Scholar 

  • Hosseinaei O, Wang S, Rials TG, Xing C, Taylor AM, Kelley SS (2011) Effect of hemicellulose extraction on physical and mechanical properties and mold susceptibility of flakeboard. Forest Prod J 61(1):31–37

    CAS  Google Scholar 

  • Hosseinaei O, Wang S, Enayati AA, Rials TG (2012a) Effects of hemicellulose extraction on properties of wood flour and wood–plastic composites. Compos Part A Appl S 43:686–694

    Article  CAS  Google Scholar 

  • Hosseinaei O, Wang S, Taylor AM, Kim J-W (2012b) Effect of hemicellulose extraction on water absorption and mold susceptibility of wood-plastic composites. Int Biodeter Biodegr 71:29–35

    Article  CAS  Google Scholar 

  • Howell C, Paredes JJ, Jellison J (2009) Decay resistance properties of hot water extracted oriented strandboard. Wood Fiber Sci 41(2):201–208

    CAS  Google Scholar 

  • Hsu WE (1986) Improved method of making dimensionally stable composite board and composite board produced by such method. Canadian Patent No. 1215510

  • Hsu WE, Schwald W, Schwald J, Shields JA (1988) Chemical and physical changes required for producing dimensionally stable wood-based composites, Part 1: steam pretreatment. Wood Sci Technol 22:281–289

    Article  CAS  Google Scholar 

  • Hsu WE, Schwald W, Shields JA (1989) Chemical and physical changes required for producing dimensionally stable wood-based composites. Wood Sci Technol 23(3):281–288

    Article  CAS  Google Scholar 

  • Ibach RE (2010) Specialty treatments. In: Wood Hanbook, Wood Handbook, Wood as an Engineering Material, Forest Products Laboratory. General Technical Report FPL-GTR-190. Madison, WI

  • Ibbett R, Gaddipati S, Davies S, Hill S, Tucker G (2011) The mechanisms of hydrothermal deconstruction of lignocellulose: new insights from thermal–analytical and complementary studies. Bioresource Technol 102:9272–9278

    Article  CAS  Google Scholar 

  • Inari GN, Petrissans M, Gerardin P (2007) Chemical reactivity of heat-treated wood. Wood Sci Technol 41:157–168

    Article  CAS  Google Scholar 

  • Irle M, Barbu MC (2010) Wood-based panel technology. In: Thoemen H et al (eds) Wood-based panels. An introduction for specialists. Brunel University Press, London

    Google Scholar 

  • Jämsä S, Viitaniemi P (2001) Heat treatment of wood—better durability without chemicals. In: Rapp AO (ed) Review on heat treatments of wood. Hamburg BFH, pp 19–24

  • John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29(2):187–207

    Article  CAS  Google Scholar 

  • Jones D, Tjeerdsma B, Spear M, Hill C (2005) Properties of wood following treatment with a modified hot oil. In: European conference on wood modification, October 6th/7th, Göttingen, Germany

  • Kalia S, Kaith BS, Kaur I (2009) Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polym Eng Sci 49(7):1253–1272

    Article  CAS  Google Scholar 

  • Kamdem DP, Pizzi A, Jermannaud A (2002) Durability of heat-treated wood. Holz Roh Werkst 60:1–6

    Article  CAS  Google Scholar 

  • Keller A (2003) Compounding and mechanical properties of biodegradable hemp fibre composites. Compos Sci Technol 63:1307–1316

    Article  CAS  Google Scholar 

  • Kiel J (2007) torrefaction for biomass upgrading into commodity fuels. IEA bioenergy task 32 workshop on fuel stage, handling and preparation and system analysis for biomass combustion technologies, Berlin, May 7

  • Kim TH (2004) Bioconversion of lignocellulosic material into ethanol: pretreatment, enzymatic hydrolysis, and ethanol fermentation, PhD Dissertation, Auburn University, Alabama

  • Kim JK, Pal K (2010) Recent advances in the processing of wood-plastic composites. Springer, Berlin

    Google Scholar 

  • Kim DY, Nishiyama Y, Wada M, Kuga S, Okano T (2001) Thermal decomposition of cellulose crystallites in wood. Holzforschung 55(5):521–524

    Article  CAS  Google Scholar 

  • Klüppel A, Mai C (2012) Effect of lignin and hemicelluloses on the tensile strength of micro-veneers determined at finite span and zero span. Holzforschung 66:493–496

    Article  Google Scholar 

  • Klyosov A (2007) Wood-plastic composites. Wiley, Hoboken

    Book  Google Scholar 

  • Kobayashi N, Okada N, Hirakawa A, Sato T, Kobayashi J, Hatano S, Itaya Y, Mori S (2009) Characteristics of solid residues obtained from hot-compressed-water treatment of woody biomass. Ind Eng Chem Res 48:373–379

    Article  CAS  Google Scholar 

  • Kollmann FFP, Côté WA (2003) Principles of wood science and technology I. Solid wood, CBLS, Marietta, OH

  • Kollmann FFP, Kuenzi EW, Stamm AJ (1975) Principles of wood science and technology II. Wood based materials. Springer, New York

    Book  Google Scholar 

  • Laemsak N, Okuma M (2000) Development of boards made from oil palm frond II: properties of binderless boards from steam-exploded fibers of oil palm frond. J Wood Sci 46:322–326

    Article  Google Scholar 

  • Laine C (2005) Structures of hemicelluloses and pectins in wood and pulp. PhD Dissertation, Helsinki University of Technology (Espoo)

  • Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33

    Article  CAS  Google Scholar 

  • Li H, Saeed A, Jahan MS, Ni Y, van Heiningen A (2010) Hemicellulose removal from hardwood chips in the pre-hydrolysis step of the kraft-based dissolving pulp production process. J Wood Chem Technol 30(1):48–60

    Article  CAS  Google Scholar 

  • Libra JA, Ro KS, Kammann C, Funke A, Berge ND, Neubauer Y et al (2011) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2(1):89–124

    Article  Google Scholar 

  • Liu S (2010) Woody biomass: niche position as a source of sustainable renewable chemicals and energy and kinetics of hot-water extraction/hydrolysis. Biotechnol Adv 28:563–582

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Hu R, Ward A, Amidon TE, Liang B, Liu S (2011) Hot-water extraction and its effect on soda pulping of aspen woodchips. Biomass Bioenerg 39:5–13

    Article  CAS  Google Scholar 

  • Luo P, Yang C (2011) Binderless particleboard from steam exploded wheat straw. Adv Mater Res 179–180:807–811

    Article  Google Scholar 

  • Maloney TM (1993) Modern particleboard and dry-process fiberboard manufacturing. Miller Freeman, Inc, San Francisco

    Google Scholar 

  • Mamleev V, Bourbigot S, Le Bras M, Yvon J (2009) The facts and hypotheses relating to the phenomenological model of cellulose pyrolysis. Interdependence of the steps. J Anal Appl Pyrolysis 84:1–17

    Article  CAS  Google Scholar 

  • Mancera C, El Mansouri N-E, Ferrando F, Salvado J (2011) The suitability of steam exploded Vitis vinifera and alkaline lignin for the manufacture of fiberboard. Bioresources 6(4):4439–4453

    CAS  Google Scholar 

  • Mani S (2009) Integrating biomass torrefaction with thermo-chemical conversion processes. In: Proceedings of the 2009 AIChE annual meeting, Nashville, TN, Nov 8–13, Paper No. 160229

  • Marchessault RH (1991) Steam explosion: a refining process for lignocellulosics. In: Focher et al. (eds) Steam explosion techniques. Fundamentals and Industrial Applications, Gordon and Breach Science Publishers, Amsterdam, pp 1–19

  • Mason WH (1926) Process and apparatus for disintegration of wood and the like. US Patent 1578609

  • Mason WH (1928) Integral insulating board with hard welded surfaces. US Patent 1663506

  • Mason WH (1931) Process of manufacturing insulated board. US Patent 1812970

  • Mayes D, Oksanen O (2002) The Thermowood® Handbook. Finnforest, Finland

    Google Scholar 

  • Mendes RF, Junior GB, Almeida NF, Surdi PG, Barbeiro IN (2013) Effect of thermal treatment on properties of OSB panels. Wood Sci Technol 47(2):243–256

    Article  CAS  Google Scholar 

  • Militz H (2002) Heat treatment technologies in Europe: scientific background and technological state-of-art. In: Proceedings of conference on “enhancing the durability of lumber and engineered wood products” February 11–13, Kissimmee, Orlando. Forest Products Society, Madison, US

  • Militz H, Tjeerdsma B (2001) Heat treatment of wood by the “Plato-Process” In: Rapp AO (ed) Review on heat treatments of wood. Hamburg BFH, pp 25–35

  • Mochidzuki K, Sakoda A, Suzuki M (2003) Liquid-phase thermogravimetric measurement of reaction kinetics of the conversion of biomass wastes in pressurized hot water: a kinetic study. Adv Environ Res 7:421–428

    Google Scholar 

  • Mohebby B, Ilbeighi F, Kazemi-Najafi S (2008) Influence of hydrothermal modification of fibers on some physical and mechanical properties of medium density fiberboard (MDF). Holz Roh Werkst 66:213–218

    Article  CAS  Google Scholar 

  • Mok WSL, Antal MJ (1992) Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water. Ind Eng Chem Res 31:1157–1161

    Article  CAS  Google Scholar 

  • Morrell JJ, Stark NM, Pendleton DE, McDonald AG (2010) Durability of wood-plastic composites. In: 10th international conference on wood & biofiber plastic composites and cellulose nanocomposites symposium, May 11–13, Forest Products Society, Madison, WI

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005a) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technol 96:673–686

    Article  CAS  Google Scholar 

  • Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch MR (2005b) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresource Technol 96:1986–1993

    Article  CAS  Google Scholar 

  • Mukhopadhyay S, Fangueiro R (2009) Physical modification of natural fibers and thermoplastic films for composites–A review. J Thermoplas Compos 22:135–162

    Article  CAS  Google Scholar 

  • Nabarlatz DA (2006) Autohydrolysis of agricultural by-products for the production of xylo-oligosaccharides. PhD Disseration, Universitat Rovira I Virgili, Tarragona

  • Navi P, Sandberg D (2012) Thermo-hydro-mechanical wood processing, 1st edn. EPFL Press, Boca Raton, FL

    Google Scholar 

  • Ngueho Yemele MC, Cloutier A, Diouf PN, Koubaa A, Blanchet P, Stevanovic T (2008) Physical and mechanical properties of particleboard made from extracted black spruce and trembling aspen bark. Forest Prod J. 58(10):38–46

    Google Scholar 

  • Niemz P (2010) Water absorption of wood and wood-based panels–significant influencing factors. In: Thoemen H et al (eds) Wood-based panels. An introduction for specialists. Brunel University Press, London

    Google Scholar 

  • Niemz P, Hofmann T, Retfalvi T (2010) Investigation of chemical changes in the structure of wood thermally modified. In: Proceedings of the 11th international IUFRO wood drying conference, Skellefteå, Sweden, January 18–22

  • Nimlos MN, Brooking E, Looker MJ, Evans RJ (2003) Biomass torrefaction studies with a molecular beam mass spectrometer. Am Chem SocDiv Fuel Chem 48(2):590–591

    CAS  Google Scholar 

  • Nzokou P, Kamdem DP (2004) Influence of wood extractives on moisture sorption and wettability of red oak (Quercus rubra), black cherry (Prunus serotina), and red pine (Pinus resinosa). Wood Fiber Sci 36(4):483–492

    CAS  Google Scholar 

  • Öhgren K, Bura R, Saddler J, Zacchi G (2007) Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresource Technol 98:2503–2510

    Article  CAS  Google Scholar 

  • Ohlmeyer M, Lukowsky D (2004) Wood-based panels produced from thermal-treated materials: properties and perspectives. In: Conference on wood frame housing durability and disaster Issue, 4–6th Oct., Los Vegas, USA, pp 127–131

  • Okino EYA, Teixeira DE, Del Menezzi CHS (2007) Post-thermal treatment of oriented strandboard (OSB) made from cypress (cupressus glauca lam.). Maderas. Ciencia y Tecnología 9(3):199–210

    Google Scholar 

  • Órfão JJM, Antunes FJA, Figueiredo JL (1999) Pyrolysis kinetics of lignocellulosic materials–three independent reactions model. Fuel 78:349–358

    Article  Google Scholar 

  • O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207

    Article  Google Scholar 

  • Papadopoulos AN, Hill CAS (2003) The sorption of water vapour by anhydride modified softwood. Wood Sci Technol 37:221–231

    Article  CAS  Google Scholar 

  • Paredes JJ (2009) The influence of hot water extraction on physical and mechanical properties of OSB. PhD Dissertation, The University of Maine

  • Paredes JJ, Jara R, Shaler SM, van Heiningen A (2008) Influence of hot water extraction on the physical and mechanical behavior of OSB. Forest Prod J 58(12):56–62

    CAS  Google Scholar 

  • Paredes JJ, Mills R, Shaler SM, Gardner DJ, van Heiningen A (2009) Surface characterization of red maple strands after hot water extraction. Wood Fiber Sci 41(1):38–50

    CAS  Google Scholar 

  • Paredes JJ, Shaler SM, Edgar R, Cole B (2010) Selected volatile organic compound emissions and performance of oriented strandboard from extracted southern pine. Wood Fiber Sci 42(4):429–438

    CAS  Google Scholar 

  • Paul W, Ohlmeyer M, Leithoff H, Boonstra MJ, Pizzi A (2006) Optimising the properties of OSB by a one-step heat pre-treatment process. Holz Roh Werkst 64:227–234

    Article  CAS  Google Scholar 

  • Paul W, Ohlmeyer M, Leithoff H (2007) Thermal modification of OSB-strands by a one-step heat pre-treatment—influence of temperature on weight loss, hygroscopicity and improved fungal resistance. Holz Roh Werkst 65:57–63

    Article  CAS  Google Scholar 

  • Pelaez-Samaniego MR, Yadama V, Lowell E, Amidon T, Chaffee TL (2012) Hot water extracted wood fiber for production of wood plastic composites (WPCs). Holzforschung. doi:10.1515/hf-2012-0071

  • Pétrissans M, Géradin P, El-Bakali I, Seraj M (2003) Wettability of heat-treated wood. Holzforschung 57(3):301–307

    Article  Google Scholar 

  • Pettersen RC (1984) The chemical composition of wood. In: Rowell R (ed) The chemistry of solid wood. Advances in Chemistry Series, American Chemical Society, Washington, DC, pp 57–126

  • Pfriem A, Zauer M, Wagenführ A (2010) Alteration of the unsteady sorption behaviour of maple (Acer pseudoplatanus L.) and spruce (Picea abies (L.) Karst.) due to thermal modification. Holzforschung 64(2):235–241

    Article  CAS  Google Scholar 

  • Phanphanich M, Mani S (2011) Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresource Technol 102:1246–1253

    Article  CAS  Google Scholar 

  • Popper R, Niemz P, Eberle G (2002) Sorptions- und Quellungseigenschaften von verdichtetem Holz. Holzforschung und Holzverwertung. Wien 6:114–116

    Google Scholar 

  • Prins MJ, Ptasinski KJ, Janssen FJJG (2006) More efficient biomass gasification via torrefaction. Energy 31:3458–3470

    Article  CAS  Google Scholar 

  • Quintana G, Velasquez J, Betancourt S, Gañá P (2009) Binderless fiberboard from steam exploded banana bunch. Ind Crop Prod 29:60–66

    Article  CAS  Google Scholar 

  • Repellin V, Guyonnet R (2005) Evaluation of heat-treated wood swelling by differential scanning calorimetry in relation to chemical composition. Holzforschung 59(1):28–34

    Article  CAS  Google Scholar 

  • Repellin V, Govin A, Rolland M, Guyonnet R (2010a) Modelling anhydrous weight loss of wood chips during torrefaction in a pilot kiln. Biomass Bioenerg 34:602–609

    Article  CAS  Google Scholar 

  • Repellin V, Govin A, Rolland M, Guyonnet R (2010b) Energy requirement for fine grinding of torrefied wood. Biomass Bioenerg 34:923–930

    Article  CAS  Google Scholar 

  • Rowell RM (1983) Chemical modification of wood. Forest Prod Abstracts 6(12):363–382

    Google Scholar 

  • Rowell RM (1991) High performance composites made from chemically modified wood and other lignocellulosic fibers. In: Sixth international symposium on wood and pulping chemistry proceedings, vol 1, Melbourne, Australia, pp 341–344

  • Rowell RM (2005a) Chemical modification of wood. In: Rowel RM (ed) Handbook of wood chemistry and wood composites. CRC Press, Boca Raton, pp 381–420

    Google Scholar 

  • Rowell RM (2005b) Moisture properties. In: Rowell RM (ed) Handbook of wood chemistry and wood composites. CRC Press, Boca Raton, pp 77–98

    Google Scholar 

  • Rowell RM (2007) Chemical modification of wood. In: Fakirov S, Bhattacharyya D (eds) Handbook of engineering biopolymers, homopolymers, blends, and composites. Hanser Gardner Publications, Inc., Cincinnati, OH, pp 673–691

    Google Scholar 

  • Rowell RM, Kawai S, Inoue M (1995) Dimensionally stabilized, very low density fiberboard. Wood Fiber Sci 27(4):428–436

    CAS  Google Scholar 

  • Rowell R, Lange S, McSweeny J, Davis M (2002) Modification of wood fiber using steam. In: Proceedings of the 6th Pacific RIM bio-based composites symposium and workshop of the chemical modification of cellulosics, vol 2, Portland, OR

  • Rue JD (1925) Paper Trade J, TAPPI Sec. 81:154–157

  • Rutherford DW, Wershaw RL, Cox LG (2005) Changes in composition and porosity occurring during the thermal degradation of wood and wood components. Scientific Investigations Report 2004-5292, US Geological Survey, Reston, VA

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biot 30:279–291

    Article  CAS  Google Scholar 

  • Sandoval-Torres S, Jomaa W, Marc F, Puiggali J-R (2010) Causes of color changes in wood during drying. For Stud China 12(4):167–175

    Article  Google Scholar 

  • Sannigrahi P, Kim DH, Jung S, Ragauskas A (2011) Pseudo-lignin and pretreatment chemistry. Energy Env Sci 4(4):1306–1310

    Article  CAS  Google Scholar 

  • Sanyer N, Chidester GH (1963) Manufacture of wood pulp. In: Browning BL (ed) The chemistry of wood. Interscience Publishers, New York

    Google Scholar 

  • Sattler C, Labbe N, Harper D, Elder T, Rials T (2008) Effects of hot water extraction on physical and chemical characteristics of oriented strand board (OSB) wood flakes. Clean 36(8):674–681

    CAS  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  PubMed  CAS  Google Scholar 

  • Schultz TP, Blermann CJ, McGlnnis GD (1983) Steam explosion of mixed hardwood chips as a biomass pretreatment. Ind Eng Chem Prod Res Dev 22:344–348

    Article  CAS  Google Scholar 

  • Schütt F, Westereng B, Horn SJ, Puls J, Saake B (2012) Steam refining as an alternative to steam explosion. Bioresource Technol 111:476–481

    Article  CAS  Google Scholar 

  • Schwald W, Brownell HH, Saddler JN (1988) Enzymatic hydrolysis of steam treated aspen wood: influence of partial hemicellulose and lignin removal prior to pretreatment. J Wood Chem Technol 8(4):543–560

    Article  CAS  Google Scholar 

  • Sekino N, Inoue M, Irle M, Adcock T (1999) The mechanisms behind the improved dimensional stability of particleboards made from steam-pretreated particles. Holzforschung 53:435–440

    Article  CAS  Google Scholar 

  • Selig MJ, Viamajala S, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2007) Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol Prog 23:1333–1339

    Article  PubMed  CAS  Google Scholar 

  • Shafizadeh F (1984) The chemistry of pyrolysis and combustion. In: Rowell R (ed) Advances in chemistry series. American Chemical Society, Washington, DC

    Google Scholar 

  • Shao S, Jin Z, Wen G, Iiyama K (2009) Thermo characteristics of steam-exploded bamboo (Phyllostachys pubescens) lignin. Wood Sci Technol 43:643–652

    Article  CAS  Google Scholar 

  • Sharp JA (1969) Process for preparing a particle board using a self-releasing binder comprising a polyisocyanate and a sulfur-containing release agent. United States Patent No. 3440189

  • Shebani AN, van Reenen AJ, Meincken M (2008) The effect of wood extractives on the thermal stability of different wood species. Thermochim Acta 471:43–50

    Article  CAS  Google Scholar 

  • Shen J, Wang X-S, Garcia-Perez M, Mourant D, Rhodes MJ, Li Z-S (2009) Effects of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel 88:1810–1817

    Article  CAS  Google Scholar 

  • Shi JL, Kocaefe D, Zhang J (2007) Mechanical behaviour of Quebec wood species heat-treated using ThermoWood process. Holz Roh Werkst 65:255–259

    Article  Google Scholar 

  • Sjöström E (1981) Wood chemistry. Fundamentals and applications. Academic Press, Orlando, FL

    Google Scholar 

  • Skaar C (1972) Water in wood, 1st edn. Syracuse University Press, NY

    Google Scholar 

  • Skaar C (1984) Wood-water relationships. In: Rowell R (ed) The chemistry of solid wood. Advances in Chemistry Series, American Chemical Society, Washington, DC, pp 127–172

    Chapter  Google Scholar 

  • Smith AJ (2011) Hot water extraction and subsequent Kraft pulping of pine wood chips. PhD Thesis, Auburn University, Auburn, AL

  • Stamm AJ (1952) Surface properties of cellulosic materials. In: Wise LE, Jahn EC (eds) Wood chemistry, vol 2, 2nd edn. Reinhold Publishing Corporation, New York

  • Stamm AJ (1956) Thermal degradation of wood and cellulose. Ind Eng Chem 48(3):413–417

    Article  CAS  Google Scholar 

  • Stamm AJ, Hansen LA (1937) Minimizing wood shrinkage and swelling. Effect of heating in various gases. Ind Eng Chem 29 (7):831–833

    Google Scholar 

  • Stanzl-Tschegg S, Beikircher W, Loidl D (2009) Comparison of mechanical properties of thermally modified wood at growth ring and cell wall level by means of instrumented indentation tests. Holzforschung 63(4):443–448

    Article  CAS  Google Scholar 

  • Startsev OV, Salin BN, Skuridin YG, Utemesov RM, Nasonov AD (1999) Physical properties and molecular mobility of the new wood composite plastic “thermobalite”. Wood Sci Technol 33:73–83

    Article  CAS  Google Scholar 

  • Suchsland O (2004) The swelling and shrinking of sood. A practical technology primer. Forest Products Society, Madison, WI

    Google Scholar 

  • Suchsland O, Enlow RC (1968) Heat treatment of exterior particleboard. Forest Prod J 18(8):24–28

    Google Scholar 

  • Suchsland O, Woodson GE (1986) Fiberboard manufacturing practices in the United States, US Department of Agriculture, Agriculture Handbook No. 640

  • Suchsland O, Woodson GE, McMillin CW (1987) Effect of cooking conditions on fiber bonding in dry-formed binderless hardboard. Forest Prod J 37(11/12):66–69

    Google Scholar 

  • Suhas PJMC, Ribeiro MMLC (2007) Lignin–from natural adsorbent to activated carbon: a review. Bioresource Technol 98:2301–2312

    Article  CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technol 83:1–11

    Article  CAS  Google Scholar 

  • Sundqvist B (2002) Color response of Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and birch (Betula pubescens) subjected to heat treatment in capillary phase. Holz Roh Werkst 60:106–114

    Article  Google Scholar 

  • Sundqvist B (2004) Color changes and acid formation in wood during heating. PhD Disseration, Division of Wood Materials Science, Skelleftea Campus, Lulea University of Technology, Skelleftea, Sweden

  • Suzuki S, Shintani H, Park SK, Saito K, Lemsak N, Okuma M, Iiyama K (1998) Preparation of binderless boards from steam-exploded pulps of oil palm (Elaeis guneenisis Jaxq.) fronds and structural characteristics of lignin and wall polysaccharides in stem exploded pulps to be discussed for selfbindings. Holzforschung 52:417–426

    Google Scholar 

  • Svoboda K, Pohořelý M, Hartman M, Martinec J (2009) Pretreatment and feeding of biomass for pressurized entrained flow gasification. Fuel Process Technol 90:629–635

    Article  CAS  Google Scholar 

  • Sweet MS, Winandy JE (1999) Influence of degree of polymerization of cellulose and hemicellulose on strength loss in fire-retardant-treated southern pine. Holzforschung 53:311–317

    Article  CAS  Google Scholar 

  • Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651

    Article  PubMed  CAS  Google Scholar 

  • Takatani M, Ito H, Ohsugi S, Kitayama T, Saegusa M, Kawai S, Okamoto T (2000a) Effect of lignocellulosic materials on the properties of thermoplastic polymer/wood composites. Holzforschung 54:197–200

    Article  CAS  Google Scholar 

  • Takatani M, Kato O, Kitayama T, Okamoto T, Tanahashi M (2000b) Effect of adding steam-exploded wood flour to thermoplastic polymer/wood composite. J Wood Sci 46:210–214

    Article  CAS  Google Scholar 

  • Tanahashi M (1990) Characterization and degradation mechanisms of wood components by steam explosion and utilization of exploded wood. Wood Res 77:49–117

    CAS  Google Scholar 

  • Taylor A, Hosseinaei O, Wang S (2008) Mold susceptibility of oriented strandboard made with extracted flakes. International research group on wood protection, IRG/WP 08-40402

  • Thomas RJ (1977) Wood: structure and chemical composition. In: Goldstein I (ed) Wood technology: chemical aspects. ACS Symposium Series; American Chemical Society, Washington, DC, pp 1–23

  • Tiemann HD (1915) The effect of different methods of drying on the strength of wood. Lumber World Rev 28(7):19–20

    Google Scholar 

  • Tjeerdsma BF, Militz H (2005) Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Roh Werkst 63:102–111

    Article  CAS  Google Scholar 

  • Tjeerdsma BF, Boonstra M, Pizzi A, Tekely P, Militz H (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz Roh Werkst 56:149–153

    Article  CAS  Google Scholar 

  • Tjeerdsma BF, Swager P, Horstman BJ, Holleboom BW, Homan WJ (2005) Process development of treatment of wood with modified hot oil. In: European conference on wood modification, October 6–7, Göttingen, Germany

  • Tsoumis G (1991) Science and technology of wood. Structure, properties, utilization. Van Nostrand Reinhold, New York

  • Tumuluru JS, Sokhansanj S, Hess JR, Wright CT, Boardman RD (2011) A review on biomass torrefaction process and product properties for energy applications. Indu Biotechnol 7(5):384–401

    Article  CAS  Google Scholar 

  • Tunc M, van Heiningen ARP (2008) Hemicellulose extraction of mixed southern hardwood with water at 150 °C: effect of time. Ind Eng Chem Res 47(18):7031–7037

    Article  CAS  Google Scholar 

  • Turner I, Rousset P, Rémond R, Perré P (2010) An experimental and theoretical investigation of the thermal treatment of wood (Fagus sylvatica L.) in the range 200–260 °C. Int J Heat Mass Tran 53:715–725

    Article  CAS  Google Scholar 

  • van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ (2011) Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioener 35:3748–3762

    Google Scholar 

  • Velasquez JA, Ferrando F, Salvado J (2003) Effects of kraft lignin addition in the production of binderless fiberboard from steam exploded Miscanthus sinensis. Ind Crops Products 18:17–23

    Article  CAS  Google Scholar 

  • Vignon MR, Dupeyre D, Garcia-Jaldon C (1996) Morphological characterization of steam exploded hemp fibers and their utilization in polypropylene-based composites. Bioresource Technol 58:203–215

    Article  CAS  Google Scholar 

  • Vila C, Romero J, Francisco JL, Garrote G, Parajó JC (2011) Extracting value from Eucalyptus wood before kraft pulping: effects of hemicelluloses solubilization on pulp properties. Bioresource Technol 102:5251–5254

    Article  CAS  Google Scholar 

  • Walton SL (2009) Biological conversion of hemicellulose extract into value-added fuels and chemicals. PhD Dissertation, University of Maine

  • Wang GS, Pan XJ, Zhu JY, Gleisner R, Rockwood D (2009) Sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust enzymatic saccharification of hardwoods. Biotechnol Prog 25(4):1086–1094

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Bergman R, Brashaw BK, Meyers S, Joyal M (2011) Heat treatment of firewood—meeting the phytosanitary requirements. General technical report FPL-GTR-200. US Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI, 34 p

  • Weil JR, Sarikaya A, Rau S-L, Goetz J, Ladisch CM, Brewer M, Hendrickson R, Ladisch MR (1998) Pretreatment of corn fiber by pressure cooking in water. Appl Biochem Biotechnol 73:1–17

    Article  CAS  Google Scholar 

  • Weiland JJ, Guyonnet R (2003) Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holz Roh Werkst 61:216–220

    CAS  Google Scholar 

  • Westin M, Larsson-Brelid P, Segerholm BK, van den Oever M (2008) Wood plastic composites from modified wood, part 3. Durability in laboratory decay tests. Document No. IRG/WP 08–40423. In: The international research group on wood protection, section 4 processes and properties, 39th annual meeting, Istanbul, Turkey, 25–29 May

  • White MS, Ifju G, Johnson JA (1974) The role of extractives in the hydrophobic behavior of loblolly pine rhytidome. Wood Fiber Sci 5(4):353–363

    Google Scholar 

  • Widyorini R, Xu J, Watanabe T, Kawai S (2005) Chemical changes in steam-pressed kenaf core binderless particleboard. J Wood Sci 51:26–32

    Article  CAS  Google Scholar 

  • Winandy JA, Rowell RM (1984) The chemistry of wood strength. In: Rowell RM (ed) The chemistry of solid wood. American Chemical Society, Washington, DC, pp 211–255

    Chapter  Google Scholar 

  • Windeisen E, Bächle H, Zimmer B, Wegener G (2009) Relations between chemical changes and mechanical properties of thermally treated wood 10th EWLP, Stockholm, Sweden, August 25–28. Holzforschung 63(6):773–778

    Article  CAS  Google Scholar 

  • Xiao L-P, Sun Z-J, Shi Z-J, Xu F, Sun R-C (2011) Impact of hot compressed water pretreatment on the structural changes of woody biomass for bioethanol production. Bioresources 6(2):1576–1598

    CAS  Google Scholar 

  • Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos Part A Appl S 41:806–819

    Article  CAS  Google Scholar 

  • Yan W, Acharjee TC, Coronella CJ, Vasquez VR (2009) Thermal pretreatment of lignocellulosic biomass. Environ Progr Sustain Energy 28(3):435–440

    Article  CAS  Google Scholar 

  • Yan W, Hastings JT, Acharjee TC, Coronella CJ, Vasquez VR (2010) Mass and energy balances of wet torrefaction of lignocellulosic biomass. Energ Fuel 24:4738–4742

    Article  CAS  Google Scholar 

  • Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuel Bioprod Bior 2:26–40

    Article  CAS  Google Scholar 

  • Youngquist JA, English BE, Scharmer RC, Chow P, Shook SR (1994) Literature review on use of nonwood plant fibers for building materials and panels. General technical report FPL-GTR-80. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI, 146 p

  • Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Renshu L, Weihong W, Anbin P (1997) Heat post-treatment to reduce thickness swelling of particleboard from fast-growing poplars. J Forestry Res-China 8(3):188–190

    Article  Google Scholar 

  • Zhang Y, Hosseinaei O, Wang S, Zhou Z (2011) Influence of hemicellulose extraction on water uptake behavior of wood strands. Wood Fiber Sci 43(3):244–250

    CAS  Google Scholar 

  • Zheng Y, Pan Z, Zhang R, Jenkins BM, Blunk S (2006) Properties of medium-density particleboard from saline Athel wood. Ind Crop Prod 23:318–326

    Article  CAS  Google Scholar 

  • Zhu JY, Pan XJ (2010) Woody biomass pretreatment for cellulosic ethanol: technology and energy consumption evaluation. Bioresource Technol 100:4992–5002

    Article  CAS  Google Scholar 

  • Zwart RWR, Boerrigter H, van der Drift H (2006) The impact of biomass pretreatment on the feasibility of overseas biomass conversion to Fischer-Tropsch products. Energ Fuel 20:2192–2197

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded through the USDA Forest Service Research and Development Woody Biomass, Bioenergy, and Bioproducts 2009 Grant Program. M.R. Pelaez-Samaniego acknowledges the Fulbright Faculty Development Program Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram Yadama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelaez-Samaniego, M.R., Yadama, V., Lowell, E. et al. A review of wood thermal pretreatments to improve wood composite properties. Wood Sci Technol 47, 1285–1319 (2013). https://doi.org/10.1007/s00226-013-0574-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-013-0574-3

Keywords

Navigation