Skip to main content
Log in

A mathematical model of mould growth on wooden material

  • Article
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Summary

A mathematical model for the simulation of mould fungi growth on wooden material is presented, based on previous regression models for mould growth on sapwood of pine and spruce. Quantification of mould growth in the model is based on the mould index used in the experiments for visual inspection. The model consists of differential equations describing the growth rate of the mould index in different fluctuating conditions including the effect of exposure time, temperature, relative humidity and dry periods. Temperature and humidity conditions favourable for mould growth are presented as a mathematical model. The mould index has an upper limit which depends on temperature and relative humidity. This limiting value can also be interpreted as the critical relative humidity needed for mould growth depending also on the mould growth itself. The model enables to calculate the development of mould growth on the surface of small wooden samples exposed to arbitrary fluctuating temperature and humidity conditions including dry periods. The numerical values of the parameters included in the model are fitted for pine and spruce sapwood, but the functional form of the model can be reasoned to be valid also for other wood-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received 18 May 1997

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hukka, A., Viitanen, H. A mathematical model of mould growth on wooden material. Wood Science and Technology 33, 475–485 (1999). https://doi.org/10.1007/s002260050131

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002260050131

Keywords

Navigation