Skip to main content
Log in

The metabolic demands of swimming behavior influence the evolution of skeletal muscle fiber design in the brachyuran crab family Portunidae

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

We investigated the influence of intracellular diffusion on muscle fiber design in several swimming and non-swimming brachyuran crabs. Species with sustained swimming behavior had aerobic dark fibers subdivided into small metabolic functional units, creating short diffusion distances necessary to support the high rates of aerobic ATP turnover associated with endurance activity. This dark fiber design was observed in all swimming species including Ovalipes ocellatus, which has apparently evolved swimming behavior independently of other Portunidae. In addition, we observed fiber and subdivision size-dependent differences in organelle distribution. Mitochondria, which rely on oxygen to function, were uniformly distributed in small fibers/subdivisions, but were clustered at the fiber periphery in larger fibers. The inverse pattern was observed for nuclei, which are not oxygen dependent, but rely on the transport of slow diffusing macromolecules. Phylogenetically independent contrast analysis revealed that these relationships were largely independent of phylogeny. Our results demonstrate cellular responses to diffusion that were necessary for the evolution of swimming and that are likely to be broadly applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Badrinath AS, White AG (2003) Contrasting patterns of mitochondrial redistribution in the early lineages of Caenorhabditis elegans and Acrobeloides sp. PS1146. Dev Biol 258:70–75

    Article  CAS  PubMed  Google Scholar 

  • Bates PC, Millward DJ (1983) Myofibrillar protein turnover. Synthesis rates of myofibrillar and sarcoplasmic protein fractions in different muscles and the changes observed during postnatal development and in response to feeding. Biochem J 214:587–592

    CAS  PubMed  Google Scholar 

  • Bitoun M, Maugenre S, Jeannet P-Y, Lacene E, Ferrer X, Laforet P, Martin J-J, Laporte J, Lochmuller H, Beggs AH, Fardeau M, Eymard B, Romero NB, Guicheney P (2005) Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat Genet 37:1207–1209

    Article  CAS  PubMed  Google Scholar 

  • Blomberg SP, Garland T (2002) Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J Evol Biol 15:899–910

    Article  Google Scholar 

  • Boyle KL, Dillaman RM, Kinsey ST (2003) Mitochondrial distribution and glycogen dynamics suggest diffusion constraints in muscle fibers of the blue crab, Callinectes sapidus. J Exp Zool 297A:1–16

    Article  Google Scholar 

  • Bruusgaard JC, Liestøl K, Ekmark M, Kollstad K, Gunderson K (2003) Number and spatial distribution of nuclei in the muscle fibers of normal mice studied in vivo. J Physiol 551(2):467–478

    Article  CAS  PubMed  Google Scholar 

  • Bruusgaard JC, Brack AS, Hughes SM, Gunderson K (2005) Muscle hypertrophy induces by the ski protein: cyto-architecture and ultrastructure. Acta Physiol Scand 185:141–149

    Article  CAS  PubMed  Google Scholar 

  • Bruusgaard JC, Liestøl K, Gunderson K (2006) Distribution of myonuclei and microtubules in live muscle fibers of young, middle-aged, and old mice. J Appl Physiol 100:2024–2030

    Article  CAS  PubMed  Google Scholar 

  • Carr SD, Tankersley RA, Hench JL, Forward RB Jr, Luettich RA Jr (2004) Movement patterns and trajectories of ovigerous blue crabs Callinectes sapidus during the spawning migration. Estuar Coast Shelf Sci 60:567–579

    Article  Google Scholar 

  • Cheek DB, Holt AB, Hill DE, Talbert JL (1971) Skeletal muscle cell mass and growth: the concept of the deoxyribonucleic acid unit. Pediatr Res 5:312–328

    Article  Google Scholar 

  • Chilibeck PD, Syrotuik DG, Bell GJ (2002) The effect of concurrent endurance and strength training on quantitative estimates of subsarcolemmal and intermyofibrillar mitochondria. Int J Sports Med 23(1):33–39

    Article  CAS  PubMed  Google Scholar 

  • Cochran DM (1935) The skeletal musculature of the blue crab Callinectes sapidus Rathbun. Smithson Misc Collns 92:1–96

    Google Scholar 

  • Crow MT, Kushmerick MJ (1982) Chemical energetics of slow- and fast-twitch muscle of the mouse. J Gen Physiol 79:147–166

    Article  CAS  PubMed  Google Scholar 

  • Curtin NA, Kushmerick MJ, Wiseman RW, Woledge RC (1997) Recovery after contraction of white muscle fibres from the dogfish Scyliorhinus canicula. J Exp Biol 200:1061–1071

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Fiedler RA (1930) Solving the question of crab migration. Fish Gazette 47:18–21

    Google Scholar 

  • Fratini S, Vannini M, Cannicci S, Schubart CD (2005) Tree-climbing mangrove crabs, a case of convergent evolution. Evol Ecol Res 7:219–233

    Google Scholar 

  • Frederick RL, Shaw JM (2007) Moving mitochondria: establishing distribution of an essential organelle. Traffic 8:1668–1675

    Article  CAS  PubMed  Google Scholar 

  • Fusco D, Bertrand E, Singer RH (2004) Imaging of single mRNAs in the cytoplasm of living cells. Prog Mol Subcell Biol 35:135–150

    Article  PubMed  Google Scholar 

  • Garland T Jr, Ives AR (2000) Using the past to predict the present: confidence intervals or regression equations in phylogenetic comparative methods. Am Nat 155:346–364

    Article  Google Scholar 

  • Garland T, Harvey PH, Ives AR (1992) Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol 41:18–32

    Google Scholar 

  • Garland T Jr, Midford PE, Ives AR (1999) An introduction to phylogenetically based statistical methods, with a new method for confidence intervals on ancestral states. Am Zool 39:374–388

    Google Scholar 

  • Garlick PJ, Maltin CA, Baillie AG, Delday MI, Grubb DA (1989) Fiber-type composition of nine rat muscles. II. Relationship to protein turnover. Am J Physiol 257:E828–E832

    CAS  PubMed  Google Scholar 

  • Giddings CJ, Gonyea WJ (1992) Morphological observations supporting muscle fiber hyperplasia following weight-lifting exercise in cats. Anat Rec 233:178–195

    Article  CAS  PubMed  Google Scholar 

  • Goldberg AL (1967) Protein synthesis in tonic and phasic skeletal muscle. Nat Lond 216:1219–1220

    Article  CAS  Google Scholar 

  • Hardy KM, Locke BR, Da Silva MD, Kinsey ST (2006) A reaction–diffusion analysis of energetics in large muscle fibers secondarily evolved for aerobic locomotor function. J Exp Biol 209:3610–3620

    Article  CAS  PubMed  Google Scholar 

  • Hardy KM, Dillaman RM, Locke BR, Kinsey ST (2009) A skeletal muscle model of extreme hypertrophic growth reveals the influence of diffusion on cellular design. Am J Physiol Regul Integr Comp Physiol 296:R1855–R1867

    CAS  PubMed  Google Scholar 

  • Hartnoll RG (1971) The occurrence, methods and significance of swimming in the Brachyura. Anim Behav 19:34–50

    Article  Google Scholar 

  • Hoppeler H, Vogt M (2001) Muscle tissue adaptations to hypoxia. J Exp Biol 204:3133–3139

    CAS  PubMed  Google Scholar 

  • Howald H, Hoppeler H, Claassen H, Mathieu O, Straub R (1985) Influences of endurance training on the ultrastructural composition of the different muscle fiber types in humans. Pflugers Arch 403(4):369–376

    Article  CAS  PubMed  Google Scholar 

  • Howard CV, Reed MG (1998) Unbiased stereology, 3-dimensional measurements in microscopy. BIOS Scientific, Oxford

    Google Scholar 

  • Jaspers RT, Feenstra HM, van Beek-Harmsen BJ, Huijing PA, van der Laarse WJ (2006) Differential effects of muscle fibre length and insulin on muscle-specific mRNA content in isolated mature muscle fibres during long-term culture. Cell Tissue Res 326:795–808

    Article  CAS  PubMed  Google Scholar 

  • Jimenez AG, Locke BR, Kinsey ST (2008) The influence of oxygen and high-energy phosphate diffusion on metabolic scaling in three species of tail-flipping crustaceans. J Exp Biol 211:3214–3225

    Article  CAS  PubMed  Google Scholar 

  • Johnson LK, Dillaman RM, Gay DM, Blum JE, Kinsey ST (2004) Metabolic influences of fiber size in aerobic and anaerobic muscles of the blue crab, Callinectes sapidus. J Exp Biol 207:4045–4056

    Article  CAS  PubMed  Google Scholar 

  • Judy MH, Dudley DL (1970) Movement of tagged blue crabs in North Carolina waters. Commer Fish Rev 32:29–35

    Google Scholar 

  • Kayar SR, Claassen H, Hoppeler H, Weibel ER (1986) Mitochondrial distribution in relation to changes in muscle metabolism in rat soleus. Respir Physiol 64(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Kelly FJ, Lewis SE, Anderson P, Goldspink DF (1984) Pre- and postnatal growth and protein turnover in four muscles of the rat. Muscle Nerve 7:235–242

    Article  CAS  PubMed  Google Scholar 

  • Kim SK, Yu SH, Jeong-Hwa S, Hübner H, Buchholz R (1998) Calculations on O2 transfer in capsules with animal cells for the determination of maximum capsule size without O2 limitation. Biotech Lett 20:549–552

    Article  CAS  Google Scholar 

  • Kinsey ST, Pathi P, Hardy KM, Jordan A, Locke BR (2005) Does intracellular metabolite diffusion limit post-contractile recovery in burst locomotor muscle? J Exp Biol 208:2641–2652

    Article  CAS  PubMed  Google Scholar 

  • Kinsey ST, Hardy KM, Locke BR (2007) The long and winding road: influences of intracellular metabolite diffusion on cellular organization and metabolism in skeletal muscle. J Exp Biol 210:3505–3512

    Article  CAS  PubMed  Google Scholar 

  • Koch L (1996) What size should a bacterium be? A question of scale. Annu Rev Microbiol 50:317–348

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Dudley J, Nei M, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinfom 9:299–306

    Article  CAS  Google Scholar 

  • Kushmerick MJ, Paul RJ (1976) Aerobic recovery metabolism following a single isometric tetanus in frog sartorius muscle at 0°C. J Physiol 254:693–709

    CAS  PubMed  Google Scholar 

  • Kushmerick MJ, Meyer RA, Brown TR (1992) Regulation of oxygen consumption in fast- and slow-twitch muscle. Am J Physiol 263:C598–C606 (Cell Physiol 32)

    CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Laurent GJ, Sparrow MP, Bates PC, Millward DJ (1978) Turnover of muscle proteins in the fowl (Gallus domesticus). Rates of protein synthesis in fast and slow skeletal, cardiac and smooth muscle of the adult fowl. Biochem J 176:393–401

    CAS  PubMed  Google Scholar 

  • Mahon BC, Neigel JE (2008) Utility of arginine kinase for resolution of phylogenetic relationships among brachyuran genera and families. Mol Phylogenet Evol 48:718–727

    Article  CAS  PubMed  Google Scholar 

  • Mainwood GW, Rakusan K (1982) A model for intracellular energy transport. Can J Physiol Pharmacol 60:98–102

    CAS  PubMed  Google Scholar 

  • Mantelatto FL, Robles R, Felder DL (2007) Molecular phylogeny of the western Atlantic species of the genus Portunus (Crustacea, Brachyura, Portunidae). Zool J Linn Soc 150:211–220

    Article  Google Scholar 

  • Midford PE, Garland T Jr, Maddison WP (2005) PDAP package of Mesquite. Version 1.07

  • Milner DJ, Weitzer G, Tran D, Bradley A, Capetanaki Y (1996) Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. J Cell Biol 134:1255–1270

    Article  CAS  PubMed  Google Scholar 

  • Nyack AC, Locke BR, Valencia A, Dillaman RM, Kinsey ST (2007) Scaling of postcontractile phosphocreatine recovery in fish white muscle: effect of intracellular diffusion. Am J Physiol Regul Integr Comp Physiol 292:R2077–R2088

    CAS  PubMed  Google Scholar 

  • Palumbi S, Martin A, Romano S, McMillan WO, Stice L, Grabowski G (1991) The simple fool’s guide to PCR. Department of Zoology and Kewalo Marine Laboratory, University of Hawaii, Honolulu

    Google Scholar 

  • Presnell JK, Schreibman MP (1997) Animal tissue techniques, 5th edn. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Ralston E, Lu Z, Biscocho N, Soumaka E, Mavrodis M, Prats C, Lomo T, Capetanaki Y, Plous T (2006) Blood vessels and desmin control the positioning of nuclei in skeletal muscle fibers. J Cell Physiol 209(3):874–882

    Article  CAS  PubMed  Google Scholar 

  • Rathbun MJ (1930) The cancroid crabs of America of the families euryalidae, portunidae, atelecyclidae, cancridae, and xanthidae. Bull US Natl Mus 152:1–609

    Google Scholar 

  • Robles R, Schubart CD, Conde JE, Carmona-Suarez C, Alvarez F, Villalobos JL, Felder DL (2007) Molecular phylogeny of the American Callinectes Stimpson, 1860 (Brachyura: Portunidae), based on two partial mitochondrial genes. Mar Biol 150:1265–1274

    Article  CAS  Google Scholar 

  • Roy RR, Monke SR, Allen DL, Edgerton VR (1999) Modulation of myonuclear number in functionally overloaded and exercised rat plantaris fibers. J Appl Physiol 87:634–642

    CAS  PubMed  Google Scholar 

  • Rube DA, van der Bliek AM (2004) Mitochondrial morphology is varied and dynamic. Mol Cell Biochem 256–257:331–339

    Article  PubMed  Google Scholar 

  • Russell B, Dix DJ (1992) Mechanisms for intracellular distribution of mRNA: in situ hybridization studies in muscle. Am J Physiol 262:C1–C8 (Cell Physiol 31)

    CAS  PubMed  Google Scholar 

  • Russell B, Motlagh D, Ashley WW (2000) Form follows function: how muscle shape is regulated by work. J Appl Physiol 88:1127–1132

    CAS  PubMed  Google Scholar 

  • Schmalbruch H, Hellhammer U (1977) The number of nuclei in adult rat muscles with special reference to satellite cells. Anat Rec 189:169–176

    Article  CAS  PubMed  Google Scholar 

  • Schubart CD, Neigel JE, Felder DL (2000) Use of the mitochondrial 16S rRNA gene for phylogenetic and population studies of Crustacea. Crustac Issues 12:817–830

    Google Scholar 

  • Smirnova L, Shurland D-L, Ryazantsev SN, van der Bliek AM (1998) A human dynamin-related protein controls the distribution of mitochondria. J Cell Biol 143:351–358

    Article  CAS  PubMed  Google Scholar 

  • Spirito CP (1972) An analysis of swimming behaviour in the Portunid crab Callinectes sapidus. Mar Behav Physiol 1:261–276

    Article  Google Scholar 

  • Starr DA (2007) Communication between the cytoskeleton and the nuclear envelope to position the nucleus. Mol BioSyst 3:583–589

    Article  CAS  PubMed  Google Scholar 

  • Starr DA, Han M (2002) The role of ANC-1 in tethering nuclei to the actin cytoskeleton. Science 298:406–409

    Article  CAS  PubMed  Google Scholar 

  • Teissier G (1939) Biometrie de la cellule. Tabulae Biologicae 19:1–64

    CAS  Google Scholar 

  • Thompson DW (1917) On growth and form. Cambridge University Press, Cambridge

    Google Scholar 

  • Tse FW, Govind CK, Atwood HL (1983) Diverse fiber composition of swimming muscles in the blue crab, Callinectes sapidus. Can J Zool 61:52–59

    Article  Google Scholar 

  • Tyler S, Sidell BD (1984) Changes in mitochondrial distribution and diffusion distances in muscle of goldfish upon acclimation to cold temperatures. J Exp Biol 232:1–9

    Google Scholar 

  • van Blerkom JV (1991) Microtubule mediation of cytoplasmic and nuclear maturation during the ear. Proc Natl Acad Sci 88:5031–5035

    Article  PubMed  Google Scholar 

  • Williams A (1974) The swimming crabs of the genus Callinectes (Decapoda: Portunidae). Fish Bull 72:685–798

    Google Scholar 

  • Wright CS (1984) Structural comparison of the two distinct sugar binding sites in wheat germ agglutinin isolectin II. J Mol Biol 178:91–104

    Article  CAS  PubMed  Google Scholar 

  • Zimmer-Faust RK, Fielder DR, Heck KL, Coen LD, Morgan SG (1994) Effects of tethering on predatory escape by juvenile blue crabs. Mar Ecol Prog Ser 111:299–303

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the helpful comments of Drs. Richard Dillaman, Ann Pabst, Richard Satterlie and Robert Roer, as well as the technical assistance of Mark Gay and Dr. Marcel van Tuinen. This research was supported by a National Science Foundation grant to STK (IOS-0719123) and a National Institute of Arthritis and Musculoskeletal and Skin Diseases grant to STK (R15-AR052708).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen T. Kinsey.

Additional information

Communicated by H. O. Pörtner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic Supplementary Material (jpg 5.55 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hardy, K.M., Lema, S.C. & Kinsey, S.T. The metabolic demands of swimming behavior influence the evolution of skeletal muscle fiber design in the brachyuran crab family Portunidae. Mar Biol 157, 221–236 (2010). https://doi.org/10.1007/s00227-009-1301-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-009-1301-3

Keywords

Navigation