Skip to main content
Log in

MHD mixed convection–radiation interaction along a permeable surface immersed in a porous medium in the presence of Soret and Dufour’s Effects

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This work is focused on the numerical modeling of steady, laminar, heat and mass transfer by MHD mixed convection from a semi-infinite, isothermal, vertical and permeable surface immersed in a uniform porous medium in the presence of thermal radiation and Dufour and Soret effects. A mixed convection parameter for the entire range of free-forced-mixed convection is employed and the governing equations are transformed into non-similar equations. These equations are solved numerically by an efficient, implicit, iterative, finite-difference scheme. The obtained results are checked against previously published work on special cases of the problem and are found to be in excellent agreement. A parametric study illustrating the influence of the thermal radiation coefficient, magnetic field, porous medium inertia parameter, concentration to thermal buoyancy ratio, and the Dufour and Soret numbers on the fluid velocity, temperature and concentration as well as the local Nusselt and the Sherwood numbers is conducted. The obtained results are shown graphically and the physical aspects of the problem are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

B 0 :

magnetic field strength

C :

dimensionless concentration, C = (cc )/(c wc )

c :

concentration at any point in the flow field

c s :

concentration susceptibility

c w :

concentration at the wall

c :

concentration at the free stream

D :

mass diffusivity

D f :

Dufour number, D f Dk T (c wc )/[α e c s c p (T wT )]

F :

inertia coefficient of the porous medium

f :

dimensionless stream function, f =  ψ /[ α e (Pe 1/2 x Ra 1/2 x ) ]

g :

gravitational acceleration

h :

local convective heat transfer coefficient

h m :

local mass transfer coefficient

K :

permeability of the porous medium

k e :

porous medium effective thermal conductivity

k T :

thermal–diffusion ratio

k*:

mean absorption coefficient

L :

characteristic length

Le :

Lewis number, Le  = αe/D

M :

square of the Hartmann number, M = (σ B 0 K)/(ɛ μ)

N :

buoyancy ratio, N = β c (c wc )/[β T (T wT )]

Nu x :

local Nusselt number, Nu x hx/k e

p :

Fluid pressure

Pe x :

local Peclet number, Pe x  = V xe

Pe L :

Peclet number at x = L

q r :

radiative heat flux

Ra x :

local Rayleigh number, Ra x  = xeg β T |T wT |K/μ]

Ra L :

Rayleigh number at x = L

S r :

Soret number, S r Dk T (T wT )/[α e T m (c wc )]

Sh x :

local Sherwood number, Sh x  = h m x/D

T :

temperature at any point

T m :

mean fluid temperature

T w :

wall temperature

T :

free stream temperature

u :

tangential or x-component of velocity

v :

normal or y-component of velocity

v 0 :

wall mass transfer coefficient

V :

free stream velocity

x :

distance along the plate

y :

distance normal to the plate

ε:

porosity of porous medium

Γ:

dimensionless porous medium inertia coefficient, Γ =  2FK(Pe 1/2 L Ra 1/2 L )/(μ L)

αe :

effective thermal diffusivity of the porous medium

β c :

concentration expansion coefficient

β T :

thermal expansion coefficient

η:

coordinate transformation in terms of x and y, η = y(Pe 1/2 x Ra 1/2 x )/x

χ:

mixed convection parameter, \(\chi = [1 + ({Ra_{x} } \mathord{\left/ {\vphantom {{Ra_{x} } {Pe_{x} }}} \right. \kern-\nulldelimiterspace} {Pe_{x} })^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} ]^{{ - 1}} \)χ = [1 + (Ra x /Pe x )1/2]−1

ψ:

stream function

θ:

dimensionless temperature, θ = (TT )/(T wT )

ρ:

fluid density

σ:

fluid electrical conductivity

σ* :

Stefan–Boltzmann constant

ξ:

transformed suction or injection parameter, ξ =  v 0 x (Pe 1/2 x Ra 1/2 x )− 1e

References

  1. Vafai K, Tien CL (1981) Boundary and inertia effects on flow and heat transfer in porous media. Int J Heat Mass Transf 24:195–203

    Article  MATH  Google Scholar 

  2. Cheng P, Minkowycz WJ (1977) Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike. J Geophys Res 82:2040–2044

    Article  Google Scholar 

  3. Minkowycz WJ, Cheng, P, Moalem F (1985) The effect of surface mass transfer on buoyancy-induced Darcian flow adjacent to a horizontal heated surface. Int Commun Heat Mass Transf 12:55–65

    Article  Google Scholar 

  4. Ranganathan P, Viskanta R (1984) Mixed convection boundary layer flow along a vertical surface in a porous medium. Numer Heat Transf 7:305–317

    Article  MATH  Google Scholar 

  5. Nakayama A, Koyama HA (1987) General similarity transformation for free, forced and mixed convection in Darcy and non-Darcy porous media. J Heat Transfer 109:1041–1045

    Article  Google Scholar 

  6. Hsieh JC, Chen TS, Armaly BF (1993) Non-similarity solutions for mixed convection from vertical surfaces in a porous medium. Int J Heat Mass Transf 36:1485–1493

    Article  MATH  Google Scholar 

  7. Lai FC (1991) Coupled heat and mass transfer by mixed convection from a vertical plate in a saturated porous medium. Int Commun Heat Mass Transf 18:93–106

    Article  Google Scholar 

  8. Raptis A, Massias C, Tzivanidis G (1982) Hydromagnetic free convection flow through a porous medium between two parallel plates. Phys Lett 90A:288–289

    Article  Google Scholar 

  9. Aldoss TK, Al-Nimr MA, Jarrah MA, Al-Sha’er BJ (1995) Magnetohydrodynamic mixed convection from a vertical plate embedded in a porous medium. Numer Heat Transf 28A:635–645

    Article  Google Scholar 

  10. Cheng P (1977) The influence of lateral mass flux on free convection boundary layers in a saturated porous medium. Int J Heat Mass Transf 20:201–206

    Article  Google Scholar 

  11. Lai FC, Kulacki FA (1990) The influence of surface mass flux on mixed convection over horizontal plates in saturated porous media. Int J Heat Mass Transf 33:576–579

    Article  Google Scholar 

  12. Lai FC, Kulacki FA (1990) The influence of lateral mass flux on mixed convection over inclined surfaces in saturated porous media. J Heat Transf 112:515–518

    Article  Google Scholar 

  13. Hooper WB, Chen TS, Armaly BF (1993) Mixed convection from a vertical plate in porous media with surface injection or suction. Numer Heat Transf 25:317–329

    Article  Google Scholar 

  14. Postelnicu A (2004) Influence of a magnetic field on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects. Int J Heat Mass Transf 47:1467–1472

    Article  MATH  Google Scholar 

  15. Eckert ERG, Drake RM (1972) Analysis of heat and mass transfer. McGraw Hill, New York

    MATH  Google Scholar 

  16. Baron JR (1963) Thermal diffusion effects in mass transfer. Int J Heat Mass Transf 6:1025–1033

    Article  Google Scholar 

  17. Sparrow EM, Minkowycz WJ, Eckert ERG (1964) Diffusion-thermo effects in stagnation-point flow of air with injection of gases of various molecular weights into the boundary layer. AIAA J 2:652–659

    MATH  Google Scholar 

  18. Sparrow EM, Minkowycz WJ, Eckert ERG (1964) Transpiration induced buoyancy and thermal diffusion–diffusion thermo in a helium–air free convection boundary layer. J Heat Mass Transf 64:508–513

    Google Scholar 

  19. Dursunkaya Z, Worek ZW (1992) Diffusion thermo and thermal diffusion effects in transient and steady natural convection from a vertical surface. Int J Heat Mass Transf 35:2060–2065

    Article  Google Scholar 

  20. Benano-Melly LB, Caltagirone J-P, Faissat B, Montel F, Costeseque P (2001) Modeling Soret coefficient measurement experiments in porous media considering thermal and solutal convection. Int J Heat Mass Transf 44:1285–1297

    Article  MATH  Google Scholar 

  21. Anghel M, Takhar HS, Pop I (2000) Dufour and Soret effects on free convection boundary-layer over a vertical surface embedded in a porous medium. Studia Universitatis Babes-Bolyai, Mathematica XLV:11–21

    MathSciNet  Google Scholar 

  22. El-Arabawy H (2003) Effect of suction/injection on the flow of a micropolar fluid past a continuously moving plate in the presence of radiation. Int J Heat Mass Transf 46:1471–1477

    Article  MATH  Google Scholar 

  23. Blottner FG (1970) Finite-difference methods of solution of the boundary-layer equations. AIAA J 8:193–205

    MATH  MathSciNet  Google Scholar 

  24. Cheng P, Ali CL, Verma AK (1981) An experimental study of non-Darcian effects in free convection in a saturated porous medium. Lett Heat Mass Transf 8:261–265

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali J. Chamkha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chamkha, A.J., Ben-Nakhi, A. MHD mixed convection–radiation interaction along a permeable surface immersed in a porous medium in the presence of Soret and Dufour’s Effects. Heat Mass Transfer 44, 845–856 (2008). https://doi.org/10.1007/s00231-007-0296-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-007-0296-x

Keywords

Navigation