Skip to main content
Log in

Numerical investigation of natural convection of Al2O3 nanofluid in vertical annuli

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This paper presents the numerical study of internal free convection of Al2O3 water nanofluid in vertical annuli. Vertical walls are maintained at constant temperatures and horizontal walls are adiabatic. Results are validated by experimental data. Effect of nanofluids on natural convection is investigated as a function of geometrical and physical parameters and particle fractions for aspect ratio of 1 ≤ H/L ≤ 5, Grashof number of 103 ≤ Gr ≤ 105 and concentration of 0 ≤ ϕ ≤ 0.06. More than 330 different numerical cases are investigated to develop a new correlation for the Nusselt number. This correlation is presented as a function of Nusselt number of base fluid and particle fraction which is a linear decreasing function of particle fraction. The developed correlation for annuli is also valid for the natural convection of Al2O3 water nanofluid in a square cavity. Furthermore, the effect of the viscosity and conductivity models on the Nusselt number of nanofluids in cylindrical cavities are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A :

Aspect ratio H/L

A :

Area

B :

Constant of Kapitza resistance

C :

Constant in Nusselt numbers ratio

C 1 :

Constant in thermal conductivity model

c p :

Specific heat (J/kg K)

\( \bar{C}_{{{\text{R}}.{\text{M}}}} \) :

Random motion velocity of nanoparticles

D :

Diameter

D 0 :

Diffusion coefficient

g :

Gravity acceleration (m/s2)

Gr L :

Grashof number \( g\beta_{\text{f}} \Updelta TL^{3} /\nu_{\text{f}}^{2} \)

H :

Height of annulus

K :

Radius ratio of annulus

k b :

Boltzmann constant 1.3807 × 10−23 J/K

k :

Thermal conductivity (W/m K)

L :

Gap (r o − r i)

l :

Mean free path

p :

Static pressure (Pa)

Pr :

Prandtl number ν f/α f

Q :

Heat flux (W)

\( Re_{{d_{\text{nano}} }} \) :

Reynolds number based on particle diameter

Ra :

Rayleigh number = Gr L·Pr

r :

Radius

T :

Temperature (°C) or (K)

V :

Velocity

X, r :

Axial and radial coordinate

α :

Thermal diffusivity (m2/s)

β :

Volumetric thermal expansion coefficient (1/K)

ϕ :

Nanoparticle fraction

μ :

Dynamic viscosity (kg/m s)

ν :

Kinematic viscosity (m2/s)

θ :

Non dimensional temperature

ρ :

Density (kg/m3)

bf:

Base fluid

C:

Cold

eff:

Effective property

f:

Properties at film temperature

H:

Hot

i:

Inner

nf:

Nanofluid

o:

Outer

Particle:

Nanofluid particle

R.M:

Random motion

r:

Radial component

x:

Axial coordinate

References

  1. Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-newtonian flows, FED-vol. 231/MD 66:99–105

  2. Hwang KS, Lee JH, Jang JP (2007) Buoyancy-driven heat transfer of water-based Al2O3 nanofluids in a rectangular cavity. Int J Heat Mass Transf 50:4003–4010

    Article  MATH  Google Scholar 

  3. Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. ASME J Heat Transf 121:280–289

    Article  Google Scholar 

  4. Eastman JA, Choi SUS, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78:718–720

    Article  Google Scholar 

  5. Jang SP, Choi SUS (2004) The role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84:4316–4318

    Article  Google Scholar 

  6. Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. ASME J Heat Transf 125:567–574

    Article  Google Scholar 

  7. Das SK, Putra N, Roetzel W (2003) Pool boiling characteristics of nanofluids. Int J Heat Mass Transf 46:851–862

    Article  Google Scholar 

  8. Wasp FJ (1977) Solid–liquid slurry pipeline transportation. Trans Tech, Berlin

  9. Einstein A (1956) Investigation on the Theory of Brownian Motion. Dover, New York

    Google Scholar 

  10. Brinkman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20:571–581

    Article  Google Scholar 

  11. Orozco D (2005) Hydrodynamic behavior of suspension of polar particles. Encycl Surf Colloid Sci 4:2375–2396

    Google Scholar 

  12. Pak BC, Cho Y (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particle. Exp Heat Transf 11:151–170

    Article  Google Scholar 

  13. Nguyen CT, Desgranges F, Galanis N, Roy G, Maré T, Boucher S, Mintsa HA (2008) Viscosity data for Al2O3–water nanofluid—hysteresis: is heat transfer enhancement using nanofluids reliable? Int J Thermal Sci 47:103–111

    Article  Google Scholar 

  14. Desgranges F (2006) Measurement of viscosity for water-based nanofluids, research report, faculty of engineering. Université de Moncton, Canada

    Google Scholar 

  15. Lundgren TS (1972) Slow flow through stationary random beds and suspensions of spheres. J Fluid Mech 51:273–299

    Article  MATH  Google Scholar 

  16. Batchelor GK (1977) The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 83(1):97–117

    Article  MathSciNet  Google Scholar 

  17. Khanafer K, Vafai K, Lightstone M (2003) Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J. Heat Mass Transf 46:3639–3653

    Article  MATH  Google Scholar 

  18. Putra N, Roetzel W, Das SK (2003) Natural convection of nano-fluids. Heat Mass Transf 39(8/9):775–784

    Article  Google Scholar 

  19. Wen D, Ding Y (2005) Formulation of nanofluids for natural convective heat transfer applications. Int J Heat Fluid Flow 26(6):855–864

    Article  Google Scholar 

  20. Kim J, Kang YT, Choi CK (2004) Analysis of convective instability and heat transfer characteristics of nanofluids. Phys Fluids 16:2395–2401

    Article  Google Scholar 

  21. Ho CJ, Chen MW, Li ZW (2008) Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity. Int J Heat Mass Transf 51:4506–4516

    Article  MATH  Google Scholar 

  22. Maïga SEB, Nguyen CT, Galanis N, Roy G (2004) Heat transfer enhancement in forced convection laminar tube flow by using nanofluids. In: Proceedings of international symposium on advances in computational heat transfer III, Paper CHT-040101, pp 24

  23. Incropera FP, Dewitt DP (2002) Fundamentals of heat and mass transfer, 5th edn. Wiley, New York

  24. Hagen KD (1999) Heat transfer with applications. Prentice-Hall, New Jersey, pp 637–638

    Google Scholar 

  25. Kumar R, Kalam MA (1991) Laminar thermal convection between vertical coaxial isothermal cylinders. Int J Heat Mass Transf 34(2):513–524

    Article  Google Scholar 

  26. Catton I (1978) Natural convection in enclosures. Proceedings of 6th international heat transfer conference, Toronto, Canada, 6:13–31

  27. Williams W, Buongiorno J, Hu LW (2008) Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes. ASME J Heat Transf 130:042412-1–042412-7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Abouali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abouali, O., Falahatpisheh, A. Numerical investigation of natural convection of Al2O3 nanofluid in vertical annuli. Heat Mass Transfer 46, 15–23 (2009). https://doi.org/10.1007/s00231-009-0540-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-009-0540-7

Keywords

Navigation