Skip to main content
Log in

Numerical simulation of forced convection of nanofluid in a confined jet

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this paper two-dimensional incompressible water–Al2O3 nanofluid flow in a confined jet in the laminar flow regime is numerically investigated. A finite volume technique on a collocated grid is employed for discretizing the governing equations by applying the SIMPLE algorithm to link the pressure and velocity fields. The present computations are in a very good agreement with experimental results in open literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

AR :

Aspect ratio (=h/d)

c 1, c 2 , c 3 , c 4 :

Constant parameter

c p :

Specific heat (kJ/kg K)

d :

Jet length (m)

d f :

Diameter of base fluid molecules (m)

d p :

Average diameter of nanoparticles (m)

h :

Height of channel (m)

i, j :

Indices

k :

Thermal conductivity (W/m K)

k b :

Boltzmann number (=1.3807 × 10−23 J/K)

l f :

Free average distance of water molecules (m)

N :

Parameter for adapting the results with experimental data

Nu :

Nusselt number

P :

Pressure (Pa)

Pr :

Prandtl number of nanofluid

Q :

Heat flux (W/m2)

Re :

Reynolds number

T :

Temperature (K)

T B :

Bulk temperature of nanofluid (K)

V b :

Brownian velocity of nanoparticles (m/s)

u :

Horizontal velocity (m/s)

v :

Vertical velocity (m/s)

α:

Thermal diffusivity (m2/s)

δ:

Center to center distance of nanoparticles (m)

δ ij :

Kronecker delta

Φ:

Volume fraction (%)

φ:

Thermal dissipation

μ:

Viscosity (Pa s)

ρ:

Density (kg/m3)

τ:

Stress tensor (Pa)

avg :

Average

f :

Base fluid

in :

Inlet

nf :

Nanofluid

p :

Particle

w :

Wall

References

  1. Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer DA, Wang HP (eds) Developments and applications of non-Newtonian flows, vol 231/MD 66. ASME, New York, pp 99–103

  2. Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluid). Int J Heat Mass Transf 45:855–863

    Article  MATH  Google Scholar 

  3. Eastman JA, Phillpot SR, Choi SUS, Keblinski P (2004) Thermal transport in nanofluids. Annu Rev Mater Res 34:219–246

    Article  Google Scholar 

  4. Li CY, Garimella SV (2001) Prandtl-number effects and generalized correlation confined and submerged jet impingement. Int J Heat Mass Transf 44:3471–3480

    Article  Google Scholar 

  5. Garimella SV (2000) Heat transfer and flow fields in confined jet impingement. Annu Rev Heat Transf 11:413–494

    Google Scholar 

  6. Narumanchi SVJ, Hassani V, Bharathan D (2005) Modeling single-phase and boiling liquid jet impingement cooling in power electronics. Technical report NREL/TP-540-38787 December

  7. Sarma ASR, Sundararajan T, Ramjee V (2000) Numerical simulation of confined laminar jet flows. Int J Numer Meth Fluids 33:609–626

    Article  MATH  Google Scholar 

  8. Biswas G, Breuer M, Durst F (2004) Backward-facing step flows for various expansion ratios at low and moderate Reynolds numbers. ASME J Fluids Eng 126:362–374

    Article  Google Scholar 

  9. Kanna PR, Das MK (2005) Conjugate forced convection heat transfer from a flat plate by laminar plane wall jet flow. Int J Heat Mass Transf 482:896–2910

    Google Scholar 

  10. Battaglia F, Tavener SJ, Kulkarni AK, Merkle CL (1997) Bifurcation of low Reynolds number flows in symmetric channels. AIAA J 35:99–105

    Article  MATH  Google Scholar 

  11. Fearn RM, Mullin T, Cliffe KA (1990) Non-linear flow phenomena in a symmetric sudden expansion. J Fluid Mech 211:595–608

    Article  Google Scholar 

  12. Durst F, Melling A, Whitelaw JH (1974) Low Reynolds number flow over a plane symmetric sudden expansion. J Fluid Mech 64:111–128

    Article  Google Scholar 

  13. Cherdron W, Durst F, Whitelaw JH (1978) Asymmetric flows and instabilities in symmetric ducts with sudden expansions. J Fluid Mech 84:13–31

    Article  Google Scholar 

  14. Ouwa Y, Watanabe M, Asawo H (1981) Flow visualization of a two-dimensional water jet in a rectangular channel. Jpn J Appl Phys 20:243–247

    Article  Google Scholar 

  15. Shuja SZ, Yilbas B, Ma S, Khan S (2008) Jet emerging from an annular nozzle and impinging onto cylindrical cavity: effect of jet velocity on flow structure and heat transfer rates. Proc I Mech E Part C J Mech Eng Sci 222:1021–1031

    Article  Google Scholar 

  16. Baydar E, Ozmen Y (2006) An experimental investigation on flow structures of confined and unconfined impinging air jets. Heat Mass Transf 42:338–346

    Article  Google Scholar 

  17. Celik N (2011) Effects of the surface roughness on heat transfer of perpendicularly impinging co-axial jet. Heat Mass Transf 47:1209–1217

    Article  Google Scholar 

  18. Manca O, Mesolella P, Nardini S, Ricci D (2011) Numerical study of a confined slot impinging jet with nanofluids. Nanoscale Res Lett 6:188–204

    Article  Google Scholar 

  19. Al-Aswadi AA, Mohammed HA, Shuaib NH, Campo A (2010) Laminar forced convection flow over a backward facing step using nanofluids. Int Commun Heat Mass Transf 37:950–957

    Article  Google Scholar 

  20. Gherasim I, Roy G, Nguyen CT, Vo-Ngoc D (2011) Heat transfer enhancement and pumping power in confined radial flows using nanoparticle suspensions (nanofluids). Int J Therm Sci 50:369–377

    Article  Google Scholar 

  21. Ghazvini M, Akhavan-Behabadi MA, Esmaeili M (2009) The effect of viscous dissipation on laminar nanofluid flow in a microchannel heat sink. Proc I Mech E Part C J Mech Eng Sci 223:2697–2706

    Article  Google Scholar 

  22. Chon CH, Kihm KD, Lee SP, Choi SUS (2005) Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett 87:153107–153110

    Article  Google Scholar 

  23. Mintsa HA, Roy G, Nguyen CT, Doucet D (2009) New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci 48:363–371

    Article  Google Scholar 

  24. Masoumi N, Sohrabi AN, Behzadmehr A (2009) New model for calculating the effective viscosity of nanofluids. J Phys D Appl Phys 42:055501–055506

    Article  Google Scholar 

  25. Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11:151–170

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ranjbar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahimi-Esbo, M., Ranjbar, A.A., Ramiar, A. et al. Numerical simulation of forced convection of nanofluid in a confined jet. Heat Mass Transfer 48, 1995–2005 (2012). https://doi.org/10.1007/s00231-012-1040-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-012-1040-8

Keywords

Navigation