Skip to main content
Log in

Thermal radiation and Hall effects on boundary layer flow past a non-isothermal stretching surface embedded in porous medium with non-uniform heat source/sink and fluid-particle suspension

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Theoretical study on hydromagnetic heat transfer in dusty viscous fluid on continuously stretching non-isothermal surface, with linear variation of surface temperature or heat flux has been carried out. Effects of Hall current, Darcy porous medium, thermal radiation and non-uniform heat source/sink are taken into the account. The sheet is considered to be permeable to allow fluid suction or blowing, and stretching with a surface velocity varied according to a linear. Two cases of the temperature boundary conditions were considered at the surface namely, PST and PHF cases. The governing partial differential equations are transferred to a system of non-linear ordinary differential equations by employing suitable similarity transformations and then they are solved numerically. Effects of various pertinent parameters on flow and heat transfer for both phases is analyzed and discussed through graphs in detail. The values of skin friction and Nusselt number for different governing parameters are also tabulated. Comparison of the present results with known numerical results is presented and an excellent agreement is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Abbreviations

A, b, D :

Constants

\(A^{*} ,B^{*}\) :

Parameters of space and temperature dependent heat generation

\(\vec{B}\) :

Magnetic induction vector

B0 :

Magnetic field

\(C_{{f_{x} }} , C_{{f_{z} }}\) :

Local skin friction coefficient along x and z directions

c p :

Specific heat coefficient of fluid (J kg−1 K−1)

c m :

Specific heat coefficient of dust particles (J kg−1 K−1)

e :

Charge of electron

E :

Electric field

Ec :

Eckert number

\(\vec{J}\) :

Current density vector

J x , J y , J z :

Current density components along x, y and z directions

f :

Dimensionless axial velocity of fluid

F :

Dimensionless axial velocity of dust

h :

Dimensionless transverse velocity of fluid phase

H :

Dimensionless transverse velocity of fluid phase

K :

Stokes drag coefficient

\(k^{*}\) :

Permeability of porous medium

k 0 :

Porous parameter

k :

Thermal conductivity (W m−1 k−1)

K + :

Mean absorption coefficient (m−1)

l :

Dust particle mass concentration parameter

\(l^{*}\) :

Characteristic length

m :

Hall parameter

M 2 :

Magnetic parameter

m p :

Mass of dust particle per unit volume

N :

Number density of dust particles

Nu :

Local Nusselt number

Pr :

Prandtl number

p e :

Electronic pressure

\(q^{{{\prime \prime \prime }}}\) :

Space and temperature dependent heat generation/absorption

q w :

Heat flux

q r :

Radiative heat flux (Wm−2)

R :

Thermal radiation parameter

r :

Radius of dust particles

Re x :

Local Reynolds number

S :

Suction/blowing parameter

Sh :

Sherwood number

T :

Fluid phase temperature (K)

u, v, w :

Fluid phase velocity components along x, y and z directions (m s−1)

U w :

Stretching sheet velocity

V w :

Suction/injection velocity

x, y, z :

Coordinates (m)

β v :

Fluid-particle interaction parameter for velocity

β T :

Fluid-particle interaction parameter for temperature

ν :

Kinematic viscosity (m2 s−1)

μ :

Dynamic viscosity (kg m−1 s−1)

σ :

Electrical conductivity of the fluid

\(\sigma^{*}\) :

Stefan–Boltzmann constant (Wm−2 K−4)

θ :

Dimensionless fluid phase temperature (K)

η :

Similarity variable

τ e :

Electron collision time

τ T :

Thermal equilibrium time

τ w :

Surface shear stress

τ v :

Relaxation time of the dust particles

\(\tau_{{w_{x} }}\) :

Surface shear stress in x-direction

\(\tau_{{w_{z} }}\) :

Surface shear stress in z-direction

γ :

Specific heat ratio

ρ :

Density of the fluid (kg m−3)

θ :

Non-dimensional temperature

\(\prime\) :

Derivative with respect to η

p :

Dust phase

w :

Fluid properties at the wall

∞:

Fluid properties at ambient condition

References

  1. Sakiadis BC (1961) Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow. AIChE 7:26–28

    Article  Google Scholar 

  2. Crane LJ (1970) Flow past a stretching sheet. ZAMP 33:645–647

    Article  Google Scholar 

  3. Grubka LJ, Bobba KM (1985) Heat transfer characteristics of a continuous stretching surface with variable temperature. J Heat Transf 107:248–250

    Article  Google Scholar 

  4. Chen CH (1988) Laminar mixed convection adjacent to vertical continuously stretching sheet. Heat Mass Transf 33:471–476

    Article  Google Scholar 

  5. Abel MS, Sanjayanand E, Nandeppanavar MM (2008) Viscoelastic MHD flow and heat transfer over a stretching sheet with viscous and Ohmic dissipation. Commun Nonlinear Sci Numer Simul 13:1808–1821

    Article  MathSciNet  MATH  Google Scholar 

  6. Ali ME (1994) Heat transfer characteristics of a continuous stretching surface. Warme und Stofffibertragung 29:227–234

    Article  Google Scholar 

  7. Nield DA, Bejan A (1992) Convection in porous media. Springer, New York

    Book  Google Scholar 

  8. Cortell R (2005) Flow and heat transfer of a fluid through a porous medium over a stretching surface with internal heat generation/absorption and suction/blowing. Fluid Dyn Res 37:231–245

    Article  MATH  Google Scholar 

  9. Anghel M, Takhar HS, Pop I (2000) Dufour and Soret effects on free convection boundary-layer over a vertical surface embedded in a porous medium, Studia Universitatis Babes-Bolyai. Mathematica XLV(4):11–21

  10. Alsaedi A, Awais M, Hayat T (2012) Effects of heat generation/absorption on stagnation point flow of nanofluid over a surface with convective boundary conditions. Commun Nonlinear Sci Numer Simul 17:4210–4223

    Article  MathSciNet  MATH  Google Scholar 

  11. Watanabe T, Pop I (1995) Hall effects on magnetohydrodynamic boundary layer flow over a continuous moving flat plate. Acta Mech 108:35–47

    Article  MATH  Google Scholar 

  12. Singh AK, Gorla RSR (2009) Free convection heat and mass transfer with Hall current, Joule heating and thermal diffusion. Heat Mass Transf 45:1341–1349

    Article  Google Scholar 

  13. Fakhar K (2007) Hall effects on Unsteady magnetohydrodynamic flow of a third grade fluid. Phys Lett 24:1129–1132

    Google Scholar 

  14. El-Aziz MA (2010) Flow and heat transfer over an unsteady stretching surface with Hall effect. Meccanica 45:97–109

    Article  MathSciNet  MATH  Google Scholar 

  15. Ali FM, Nazar R, Arifin NM, Pop I (2011) Effect of Hall current on MHD mixed convection boundary layer flow over a stretched vertical flat plate. Meccanica 46:1103–1112

    Article  MathSciNet  MATH  Google Scholar 

  16. Bataller RC (2008) Radiation effects in the Blasius flow. Appl Math Comput 198:333–338

    Article  MathSciNet  MATH  Google Scholar 

  17. Pal D (2005) Heat and mass transfer in stagnation-point flow towards a stretching surface in the presence of buoyancy force and thermal radiation. Meccanica 44:145–158

    Article  Google Scholar 

  18. Mukhopadhyay S (2013) Effects of thermal radiation and variable fluid viscosity on stagnation point flow past a porous stretching sheet. Meccanica. 48:1717–1730. doi:10.1007/s11012-013-9704-0

  19. Magyari E, Pantokratoras A (2011) Note on the effect of thermal radiation in the linearized Rosseland approximation on the heat transfer characteristics of various boundary layer flows. Int Commun Heat Mass Transf 38:554–556

    Article  Google Scholar 

  20. Cortell R (2005) Flow and heat transfer of a fluid through a porous medium over a stretching surface with internal heat generation/absorption and suction/blowing. Fluid Dyn Res 37:231–245

    Article  MATH  Google Scholar 

  21. Abo-Eldahab EM, Aziz MAE (2004) Blowing/suction effect on hydromagnetic heat transfer by mixed convection from an inclined continuously stretching surface with internal heat generation/absorption. Int J Therm Sci 43:709–719

    Article  Google Scholar 

  22. Pal D (2010) Mixed convection heat transfer in the boundary layers on an exponentially stretching surface with magnetic field. Appl Math Comput 217:2356–2369

    Article  MathSciNet  MATH  Google Scholar 

  23. Abel MS, Mahesha N (2008) Heat transfer in MHD viscoelastic fluid flow over a stretching sheet with variable thermal conductivity, non-uniform heat source and radiation. Appl Math Model 32:1965–1983

    Article  MathSciNet  MATH  Google Scholar 

  24. Saffman PG (1962) On the stability of laminar flow of a dusty gas. J Fluid Mech 133:120–128

    Article  MathSciNet  Google Scholar 

  25. Datta N, Mishra SK (1982) Boundary layer flow of a dusty fluid over a semi-infinite flat plate. Acta Mech 42:71–83

    Article  MathSciNet  MATH  Google Scholar 

  26. Vajravelu K, Nayfeh J (1992) Hydromagnetic flow of a dusty fluid over a stretching sheet. Int J Nonlinear Mech 27:937–945

    Article  MATH  Google Scholar 

  27. Gireesha BJ, Ramesh GK, Abel MS, Bagewadi CS (2011) Boundary layer flow and heat transfer of a dusty fluid over a stretching sheet with non-uniform heat source/sink. Int J Multiph Flow 37:977–982

    Article  Google Scholar 

  28. Gireesha BJ, Roopa GS, Bagewadi CS (2012) Effect of viscous dissipation and heat source on flow and heat transfer of a dusty fluid over unsteady stretching sheet. Appl Math Mech 30(8):1001–1014

    Article  MathSciNet  Google Scholar 

  29. Gireesha BJ, Mahanthesh B, Gorla RSR (2014) Suspended particle effect on nanofluid boundary layer flow past a stretching surface. J Nanofluids 3:267–277

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (B. J. Gireesha) is thankful to the University Grants Commission, India, for the financial support under the scheme of Raman Fellowship for Post-Doctoral Research for Indian Scholars in USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rama Subba Reddy Gorla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gireesha, B.J., Mahanthesh, B., Gorla, R.S.R. et al. Thermal radiation and Hall effects on boundary layer flow past a non-isothermal stretching surface embedded in porous medium with non-uniform heat source/sink and fluid-particle suspension. Heat Mass Transfer 52, 897–911 (2016). https://doi.org/10.1007/s00231-015-1606-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1606-3

Keywords

Navigation