Skip to main content
Log in

Influence of the elliptical and circular orifices on the local heat transfer distribution of a flat plate impinged by under-expanded jets

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Experimental study is carried out to explore the influence of nozzle profile on heat transfer for underexpanded impinging jets. Circular and elliptical orifices are used to generate underexpanded jets for underexpantion ratio ranging from 1.25 to 2.67. The supply pressure maintained in the present study ranges from 2.36 to 5.08 times the ambient pressure. IR thermal imaging camera is used to measure surface temperature of thin foil at different nozzle to plate distances. Shadowgraph and pressure distribution are used to understand the flow structure and distribution of circular and elliptical nozzle. It is observed that plate shock and pressure distribution over the plate have significant influence on the local heat transfer. The performance of the circular orifice is far better at lower z/d. The axis switching is observed for an elliptical orifice. Correlation for local heat transfer predicts Nusselt number comparable within 15 % of experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

A :

Exit area of the orifice, m2

C p :

Specific heat of air at constant pressure, kJ/kg K

c :

Velocity of sound, m/sec

D :

Diameter meter of the supply pipe, m

d :

Equivalent diameter of orifice, m

h :

Heat transfer coefficient, W/m2K

I :

Current, A

k :

Thermal conductivity of air, W/mK

l :

Length of pipe, m

\( \dot{m} \) :

Mass flow rate, kg/sec

M :

Design Mach number, M = U /c

Nu :

Nusselt number, \( \left( {\frac{hd}{k}} \right) \)

Nu avg :

Average Nusselt number

Nu o :

Nusselt Number at the stagnation point

NPR :

Nozzle pressure ratio (P s /P )

P 0 :

Supply pressure, Pa

P :

Ambient pressure, Pa

P e :

Nozzle exit pressure, Pa

p :

Perimeter, m

Pr :

Prandtl number, (μCp/k)

q :

Heat transfer rate, W/m2

\( q_{conv} \) :

Heat carried out by convection from impinging jet, W/m2

\( q_{nat } \) :

Heat carried out by convection from back side of plate, W/m2

\( q_{joule} \) :

Total heat supplied, W/m2

\( q_{loss} \) :

Heat loss by radiation and convection from the plate, W/m2

\( q_{rad\left( b \right)} \) :

Heat loss by radiation from the back side, W/m2

\( q_{{rad\left( {f } \right)}} \) :

Heat loss by radiation from the front side, W/m2

R :

Recovery factor

r :

Radial distance from the stagnation point, m

Re :

Reynolds number, \( \left( {\rho U_{\infty } d/\mu = 4\dot{m}/\pi \mu d} \right) \)

T aw :

Adiabatic wall temperature, K

T aw :

Adiabatic wall temperature, K

T d :

Jet dynamic temperature, K

T i :

Jet initial temperature, K

T j0 :

Jet total temperature, K

T js :

Jet static temperature, K

T jd :

Jet dynamic temperature, K

T w :

Wall temperature, K

U :

Velocity, (\( U_{\infty } = \frac{{\dot{m}}}{A\rho } \)), m/sec

V :

Voltage, V

z :

Nozzle to plate distance, m

γ :

Specific heat ratio

µ :

Viscosity of fluid, Pa.s

ρ :

Density of fluid, kg/m3

References

  1. Henderson LF (1966) Experiments on the impingement of a supersonic jet on a flat plate. J Appl Math Phys 17(5):553–569

    Article  Google Scholar 

  2. Donaldson CD, Snedeker RS (1971) “A study of free jet impingement. Part 1. Mean properties of free and impinging jets.”. J Fluid Mech 45(02):281–319

    Article  Google Scholar 

  3. Lamont PJ, Hunt BL (1980) “The impingement of underexpanded, axisymmetric jets on perpendicular and inclined flat plates’’. J Fluid Mech 100(3):471–511

    Article  Google Scholar 

  4. Addy AL (1981) Effects of axisymmetric sonic nozzle geometry on Mach disk characteristics. AIAA J 19(1):121–122

    Article  Google Scholar 

  5. Mehta RC, Prasad JK (1998) Investigation of supersonic free jets emanating from convergent divergent nozzles. Int J Comput Fluid Dyn 10:61–71

    Article  MATH  Google Scholar 

  6. Alvi FS, Ladd JA, Bower WW (2002) Experimental and computational investigation of supersonic impinging jets. AIAA J 40(4):599–609

    Article  Google Scholar 

  7. Inman JA, Danehy PM, Nowak RJ, Alderfer DW (2008) “Fluorescence imaging study of impinging underexpanded jets”. AIAA- 2008-619, 46th AIAA Aerosapce Sciences Meeting and Exhibit, Nevada

  8. Thangadurai M, Das D (2010) Characteristics of counter-rotating vortex rings formed ahead of a compressible vortex ring. Exp Fluids 49(6):1247–1261

    Article  Google Scholar 

  9. Thangadurai M, Das D (2012) Experimental study on a compressible vortex ring in collision with a wall. J Vis 15(4):321–332

    Article  Google Scholar 

  10. Rajapukeran E (1993) “Experimental and computational investigations of underexpanded jets from elliptical sonic nozzles”, Ph. D. Thesis, Indian Institute of Science, Bangalore, India

  11. Yaga M, Ueda K, Ohshiro T, Senaha I, Oyakawa K (2000) Experimental and three-dimensional numerical study on under-expanded impinging jets. J Therm Sci 9(4):316–321

    Article  Google Scholar 

  12. Jothi TJS, Srinivasan K (2008) Acoustic characteristics of non-circular slot jets. Acta Acust United Acust 94:229–242

    Article  Google Scholar 

  13. Srinivasan K, Jothi TJS, Shet USP, Elangovan S, Rathakrishnan E (2009) “Relationship between shock-cell length and noise of jets from rectangular and elliptic disk nozzles”. Int J Turbo Jet Engines 26:145–153

    Article  Google Scholar 

  14. Rahimi M, Owen I, Mistry J (2003) Impingement heat transfer in an under-expanded axisymmetric air jet. Int J Heat Mass Transf 46:263–272

    Article  Google Scholar 

  15. Kim BG, Yu MS, Cho HH (2003) Recovery temperature measurement of underexpanded sonic jets impinging on a flat plate. J Thermophys Heat Transf 17(3):313–319

    Article  Google Scholar 

  16. Kim BG, Yu MS, Cho YI, Cho HH (2002) Distributions of recovery temperature on flat plate by underexpanded supersonic impinging jet. J Thermophys Heat Transf 16(3):425–431

    Article  Google Scholar 

  17. Yu MS, Kim BG, Cho HH (2005) Heat transfer on flat surface impinged by an underexpanded sonic jet. J Thermophys Heat Transf 19(4):448–454

    Article  Google Scholar 

  18. Ramanujachari V, Vijaykant S, Roy RD, Ghanegaonkar PM (2005) Heat transfer due to supersonic flow impingement on a vertical plate. Int J Heat Mass Transf 48:3707–3712

    Article  Google Scholar 

  19. Meena HC, Reodikar SA, Vinze R, Prabhu SV (2016) Influence of the shape of the orifice on the local heat transfer distribution between smooth flat surface and impinging incompressible air jet. Exp Therm Fluid Sci 70:292–306

    Article  Google Scholar 

  20. Vinze R, Chandel S, Limaye MD, Prabhu SV (2016) Influence of jet temperature and nozzle shape on the heat transfer distribution between a smooth plate and impinging air jets. Int J Therm Sci 99:136–151

    Article  Google Scholar 

  21. Lytle D, Webb BW (1994) Air jet impingement heat transfer at low nozzle plate spacings. Int J Heat Mass Transf 37:1687–1697

    Article  Google Scholar 

  22. Katti V, Prabhu SV (2008) Experimental study and theoretical analysis of local heat transfer distribution between smooth flat surface and impinging air jet from a circular pipe nozzle. Int J Heat Mass Transf 51:4480–4495

    Article  MATH  Google Scholar 

  23. Moffat RJ (1988) Describing the uncertainties in experimental results. Exp Therm Fluid Sci 1:3–17

    Article  Google Scholar 

  24. Quinn WR (2006) Upstream nozzle shaping effects on near field flow in round turbulent free jets. Eur J Mech B/Fluids 25(3):279–301

    Article  MATH  Google Scholar 

  25. Jothi TJS, Srinivasan K (2009) Role of initial conditions on noise from underexpanded pipe jets. Phys Fluids (1994-present) 21(6):66–103

    MATH  Google Scholar 

  26. Iwamoto J, Deckker BEL (1981) Development of flow field when a symmetrical under-expanded sonic jet impinges on a flat plate. J Fluid Mech 113:299–313

    Article  MATH  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the efforts put in by Mr. Vittoba Kharat and Mr. Rahul Shirsat in building the experimental setup and fixing the mechanical problems during the course of the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Prabhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinze, R., Limeye, M.D. & Prabhu, S.V. Influence of the elliptical and circular orifices on the local heat transfer distribution of a flat plate impinged by under-expanded jets. Heat Mass Transfer 53, 1439–1455 (2017). https://doi.org/10.1007/s00231-016-1902-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-016-1902-6

Keywords

Navigation