Skip to main content
Log in

Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Experimental investigation on the thermal performance of a flat heat pipe working with carbon nanotube nanofluid is conducted. It is used for cooling a heater working at high heat flux conditions up to 190 kW/m2. The heat pipe is fabricated from aluminium and is equipped with rectangular fin for efficient cooling of condenser section. Inside the heat pipe, a screen mesh was inserted as a wick structure to facilitate the capillary action of working fluid. Influence of different operating parameters such as heat flux, mass concentration of carbon nanotubes and filling ratio of working fluid on thermal performance of heat pipe and its thermal resistance are investigated. Results showed that with an increase in heat flux, the heat transfer coefficient in evaporator section of the heat pipe increases. For filling ratio, however, there is an optimum value, which was 0.8 for the test heat pipe. In addition, CNT/water enhanced the heat transfer coefficient up to 40% over the deionized water. Carbon nanotubes intensified the thermal performance of wick structure by creating a fouling layer on screen mesh structure, which changes the contact angle of liquid with the surface, intensifying the capillary forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

I:

Current, A

L:

Length (height of heat pipe), m

h:

Heat transfer coefficient, W/m2. K

q:

Heat flux, kW/m2

Q:

Applied heat, Watt

R:

Thermal resistance of the heat pipe, K/W

T:

Temperature, K or °C

V:

Voltage, v

a:

Adiabatic

e:

Evaporator

c:

Condenser

DI:

Deionized

HTE:

Heat transfer enhancement

References

  1. Liu Z-H, Li Y-Y (2012) A new frontier of nanofluid research – application of nanofluids in heat pipes. Int J Heat Mass Transf 55:6786–6797. https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.086

    Article  Google Scholar 

  2. Aryanpour N, Mansouri-Torshizi H, Nakhjavan M, H. Shirazi F (2012) Cytotoxicity of Diimine palladium (II) complexes of Alkyldithiocarbamate derivatives on human lung, ovary and liver cells. Iran J Pharm Res 11: 689–695

  3. Ashtarinezhad A, Shirazi FH, Vatanpour H, Mohamazadehasl B, Panahyab A, Nakhjavani M (2014) FTIR-microspectroscopy detection of metronidazole teratogenic effects on mice fetus. Iran J Pharm Res IJPR 13:101

    Google Scholar 

  4. Ebrahim K, Nakhjavani M (2013) Survey of availability, use and knowledge about toxicity of diphenhydramine for children among Iranian mothers. Iranian. J Pharm Sci 9:11–16

    Google Scholar 

  5. Ebrahim K, Vatanpour H, Zare A, Shirazi FH, Nakhjavani M (2016) Anticancer activity a of Caspian cobra (Naja Naja Oxiana) snake venom in human cancer cell lines via induction of apoptosis. Iran J Pharm Res IJPR 15:101

    Google Scholar 

  6. Jamali B, Nakhjavani M, Hosseinzadeh L, Amidi S, Nikounezhad N, Shirazi FH (2015) Intracellular GSH alterations and its relationship to level of resistance following exposure to cisplatin in cancer cells. Iran J Pharm Res IJPR 14:513

    Google Scholar 

  7. Nakhjavani M, Ashtarinezhad A, Shirazi F (2012) Studying the effect of methylparaben and propylparaben on growth curve of human breast adenocarcinoma cell line. Res Pharm Sci 7:175

    Google Scholar 

  8. Nakhjavani M, Nikkhah V, Sarafraz M, Shoja S, Sarafraz M (2017) Green synthesis of silver nanoparticles using green tea leaves: experimental study on the morphological, rheological and antibacterial behaviour. Heat Mass Transf 7:1–9

    Google Scholar 

  9. Nakhjavani M, Nikounezhad N, Ashtarinezhad A, Shirazi FH (2016) Human lung carcinoma reaction against metabolic serum deficiency stress. Iran J Pharm Res IJPR 15:817

    Google Scholar 

  10. Nakhjavani M, Nikounezhad N, H Shirazi F (2014) Effects of cells density and positioning on optimized FTIR biospectroscopy. Iran J Pharm Res IJPR 10:61–68

    Google Scholar 

  11. Nakhjavani M, Nikounezhad N, Shirazi FH (2016) The effects parabens on the estrogenic receptors behavior in human breast adenocarcinoma MCF-7 cell line. Am J PharmTech Res 6:119–128

    Google Scholar 

  12. Nakhjavani M, Stewart DJ, Shirazi FH (2017) Effect of steroid and serum starvation on a human breast cancer adenocarcinoma cell line. J Exp Ther Oncol 12

  13. Nakhjavani M, Vatanpour H, Abootorabi A, Shahriari F, Mohamadzadehasl B, Bovand T, Vatanpour S (2016) In vivo effect of lidocaine on mouse exposed to Odontobuthos Doriae scorpion venom. Int J Med Res Health Sci 5:368–375

    Google Scholar 

  14. Nakhjavani M, Vatanpour H, Shahriari F, Mohamadzadehasl B (2016) Lifesaving effect of lidocaine on Odontobuthos Doriae scorpion envenomation in mice. Am J PharmTech Res 6:179–190

    Google Scholar 

  15. Nakhjavani M, Zarghi A, Shirazi FH (2014) Cytotoxicity of selected novel chalcone derivatives on human breast, lung and hepatic carcinoma cell lines. Iran J Pharma Res IJPR 13:953

    Google Scholar 

  16. Nikounezhad N, Nakhjavani M, Shirazi FH (2016) Generation of cisplatin-resistant ovarian cancer cell lines. Iranian. J Pharm Sci 12:11–20

    Google Scholar 

  17. Nikounezhad N, Nakhjavani M, Shirazi FH (2017) Cellular glutathione level does not predict ovarian cancer cells' resistance after initial or repeated exposure to cisplatin. J Exp Ther Oncol 12(1):35–42

    Article  Google Scholar 

  18. Sarafraz M, Nikkhah V, Nakhjavani M, Arya A (2017) Fouling formation and thermal performance of aqueous carbon nanotube nanofluid in a heat sink with rectangular parallel microchannel. Appl Therm Eng 123:29–39

    Article  Google Scholar 

  19. Shirazi FH, Zarghi A, Kobarfard F, Zendehdel R, Nakhjavani M, Arfaiee S, Zebardast T, Mohebi S, Anjidani N, Ashtarinezhad A (2011) Remarks in successful cellular investigations for fighting breast cancer using novel synthetic compoundsBreast cancer-focusing tumor microenvironment. Stem Cells Metastasis InTech

  20. Vakili N, Nakhjavani M, Mirzayi HR, Shirazi FH (2012) Studying silibinin effect on human endothelial and hepatocarcinoma cell lines. The 13th International Pharmaceutical Sciences Congress Research in Pharmaceutical Sciences, 7(5):S174

  21. Vatanpour H, Nakhjavani M, Shahriari F (2012) Lidocaine as a potential antagonist for Odontobuthos doriae scorpion venom in mice. Res Pharm Sci 7:153

    Google Scholar 

  22. Salari E, Peyghambarzadeh S, Sarafraz M, Hormozi F, Nikkhah V (2017) Thermal behavior of aqueous iron oxide nano-fluid as a coolant on a flat disc heater under the pool boiling condition. Heat Mass Transf 53:265–275

    Article  Google Scholar 

  23. Sarafraz M, Arya A, Hormozi F, Nikkhah V (2017) On the convective thermal performance of a CPU cooler working with liquid gallium and CuO/water nanofluid: a comparative study. Appl Therm Eng 112:1373–1381

    Article  Google Scholar 

  24. Sarafraz M, Arya A, Nikkhah V, Hormozi F (2017) Thermal performance and viscosity of biologically produced silver/coconut oil Nanofluids. Chem Biochem Eng Q 30:489–500

    Article  Google Scholar 

  25. Sarafraz M, Hormozi F, Nikkhah V (2016) Thermal performance of a counter-current double pipe heat exchanger working with COOH-CNT/water nanofluids. Exp Thermal Fluid Sci 78:41–49

    Article  Google Scholar 

  26. Sarafraz M, Hormozi F, Peyghambarzadeh S (2015) Role of nanofluid fouling on thermal performance of a thermosyphon: are nanofluids reliable working fluid? Appl Therm Eng 82:212–224

    Article  Google Scholar 

  27. Sarafraz M, Nikkhah V, Madani S, Jafarian M, Hormozi F (2017) Low-frequency vibration for fouling mitigation and intensification of thermal performance of a plate heat exchanger working with CuO/water nanofluid. Appl Therm Eng:388–399

  28. Chol S (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ Fed 231:99–106

    Google Scholar 

  29. Wang P-Y, Chen X-J, Liu Z-H, Liu Y-P (2012) Application of nanofluid in an inclined mesh wicked heat pipes. Thermochim Acta 539:100–108. https://doi.org/10.1016/j.tca.2012.04.011

    Article  Google Scholar 

  30. Xue Fei Y, Zhen-Hua L, Jie Z (2008) Heat transfer performance of a horizontal micro-grooved heat pipe using CuO nanofluid. J Micromech Microeng 18:035038

    Article  Google Scholar 

  31. Qu J, Wu H (2011) Thermal performance comparison of oscillating heat pipes with SiO2/water and Al2O3/water nanofluids. Int J Therm Sci 50:1954–1962. https://doi.org/10.1016/j.ijthermalsci.2011.04.004

    Article  Google Scholar 

  32. Teng T-P, Hsu H-G, Mo H-E, Chen C-C (2010) Thermal efficiency of heat pipe with alumina nanofluid. Journal of alloys and compounds 504. Supplement 1:S380–S384. https://doi.org/10.1016/j.jallcom.2010.02.046

    Google Scholar 

  33. Sarafraz MM, Hormozi F (2014) Experimental study on the thermal performance and efficiency of a copper made thermosyphon heat pipe charged with alumina–glycol based nanofluids. Powder Technol 266:378–387. https://doi.org/10.1016/j.powtec.2014.06.053

    Article  Google Scholar 

  34. Hung Y-H, Teng T-P, Lin B-G (2013) Evaluation of the thermal performance of a heat pipe using alumina nanofluids. Exp Thermal Fluid Sci 44:504–511

    Article  Google Scholar 

  35. Naphon P, Assadamongkol P, Borirak T (2008) Experimental investigation of titanium nanofluids on the heat pipe thermal efficiency. Int Commun Heat Mass Transfer 35:1316–1319. https://doi.org/10.1016/j.icheatmasstransfer.2008.07.010

    Article  Google Scholar 

  36. Saleh R, Putra N, Prakoso SP, Septiadi WN (2013) Experimental investigation of thermal conductivity and heat pipe thermal performance of ZnO nanofluids. Int J Therm Sci 63:125–132. https://doi.org/10.1016/j.ijthermalsci.2012.07.011

    Article  Google Scholar 

  37. Goshayeshi HR, Goodarzi M, Dahari M (2015) Effect of magnetic field on the heat transfer rate of kerosene/Fe2O3 nanofluid in a copper oscillating heat pipe. Exp Thermal Fluid Sci 68:663–668. https://doi.org/10.1016/j.expthermflusci.2015.07.014

    Article  Google Scholar 

  38. Tripathi D, Bég OA (2014) A study on peristaltic flow of nanofluids: application in drug delivery systems. Int J Heat Mass Transf 70:61–70

    Article  Google Scholar 

  39. Kohler N, Sun C, Fichtenholtz A, Gunn J, Fang C, Zhang M (2006) Methotrexate-immobilized poly (ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small 2:785–792

    Article  Google Scholar 

  40. Salloum M, Ma R, Weeks D, Zhu L (2008) Controlling nanoparticle delivery in magnetic nanoparticle hyperthermia for cancer treatment: experimental study in agarose gel. Int J Hyperth 24:337–345

    Article  Google Scholar 

  41. Kim J-K, Jung JY, Kang YT (2007) Absorption performance enhancement by nano-particles and chemical surfactants in binary nanofluids. Int J Refrig 30:50–57

    Article  Google Scholar 

  42. Lee JW, Jung J-Y, Lee S-G, Kang YT (2011) CO 2 bubble absorption enhancement in methanol-based nanofluids. Int J Refrig 34:1727–1733

    Article  Google Scholar 

  43. Saidur R, Leong K, Mohammad H (2011) A review on applications and challenges of nanofluids. Renew Sust Energ Rev 15:1646–1668

    Article  Google Scholar 

  44. Taylor R, Coulombe S, Otanicar T, Phelan P, Gunawan A, Lv W, Rosengarten G, Prasher R, Tyagi H (2013) Small particles, big impacts: a review of the diverse applications of nanofluids. J Appl Phys 113:011301

    Article  Google Scholar 

  45. Yahya N, Kashif M, Nasir N, Niaz Akhtar M, Yusof NM (2012) Cobalt ferrite nanoparticles: an innovative approach for enhanced oil recovery application. J Nano Res Trans Tech Publ 17:115–126

    Google Scholar 

  46. Eastman J, Choi U, Li S, Thompson L, Lee S (1996) Enhanced thermal conductivity through the development of nanofluids. MRS proceedings Cambridge Univ Press, Cambridge, p 3

    Google Scholar 

  47. Xuan Y, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 21:58–64

    Article  Google Scholar 

  48. Kim D, Kwon Y, Cho Y, Li C, Cheong S, Hwang Y, Lee J, Hong D, Moon S (2009) Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Curr Appl Phys 9:e119–e123

    Article  Google Scholar 

  49. Wu Z, Wang L, Sundén B (2013) Pressure drop and convective heat transfer of water and nanofluids in a double-pipe helical heat exchanger. Appl Therm Eng 60:266–274

    Article  Google Scholar 

  50. Zohuri B (2016) Other types of heat PipesHeat pipe design and technology: modern applications for practical thermal management. Springer International Publishing, Cham, pp 431–449

    Book  Google Scholar 

  51. Bejan A, Kraus AD (2003) Heat transfer handbook. Wiley, Hoboken

    Google Scholar 

  52. Asirvatham LG, Nimmagadda R, Wongwises S (2013) Heat transfer performance of screen mesh wick heat pipes using silver–water nanofluid. Int J Heat Mass Transf 60:201–209. https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.037

    Article  Google Scholar 

  53. Sarafraz M, Fazel AS, Hasanzadeh Y, Arabshamsabadi A, Bahram S (2012) Development of a new correlation for estimating pool boiling heat transfer coefficient of MEG/DEG/water ternary mixture. Chem Ind Chem Eng Q CICEQ 18:11–18

    Article  Google Scholar 

  54. Sarafraz M, Hormozi F (2014) Qualitative investigation of the convective boiling heat transfer of dilute Al2O3-water/glycerol solution inside the vertical annuli. Bulg Chem Commun 46:645–651

    Google Scholar 

  55. Sarafraz M, Hormozi F, Peyghambarzadeh S, Vaeli N (2015) Upward flow boiling to di-water and cuo nanofluids inside the concentric annuli. J Appl Fluid Mech 8:651–659

    Article  Google Scholar 

  56. Sarafraz M, Peyghambarzadeh S, Alavi Fazel S (2012) Enhancement of the pool boiling heat transfer coefficient using the gas injection into the water. Pol J Chem Technol 14:100–109

    Article  Google Scholar 

  57. Sarafraz MM, Peyghambarzadeh S, Fazel AS (2012) Experimental studies on nucleate pool boiling heat transfer to ethanol/MEG/DEG ternary mixture as a new coolant. Chem Ind Chem Eng Q 18:577–586

    Article  Google Scholar 

  58. Alavi Fazel S, Sarafraz M, Arabi Shamsabadi A, Peyghambarzadeh S (2013) Pool boiling heat transfer in diluted water. Heat Transf Eng 34:828–837

    Article  Google Scholar 

  59. Fazel SA, Sarafraz M, Shamsabadi AA, Peyghambarzadeh S (2013) Pool boiling heat transfer in diluted water/glycerol binary solutions. Heat Transf Eng 34:828–837

    Article  Google Scholar 

  60. Fazel SA, Shamsabadi AA, Sarafraz M, Peyghambarzadeh S (2011) Artificial boiling heat transfer in the free convection to carbonic acid solution. Exp Thermal Fluid Sci 35:645–652

    Article  Google Scholar 

  61. Buschmann MH (2013) Nanofluids in thermosyphons and heat pipes: overview of recent experiments and modelling approaches. Int J Therm Sci 72:1–17. https://doi.org/10.1016/j.ijthermalsci.2013.04.024

    Article  Google Scholar 

  62. Paramatthanuwat T, Boothaisong S, Rittidech S, Booddachan K (2010) Heat transfer characteristics of a two-phase closed thermosyphon using de ionized water mixed with silver nano. Heat Mass Transf 46:281–285. https://doi.org/10.1007/s00231-009-0565-y

    Article  Google Scholar 

  63. Parametthanuwat T, Rittidech S, Pattiya A, Ding Y, Witharana S (2011) Application of silver nanofluid containing oleic acid surfactant in a thermosyphon economizer. Nanoscale Res Lett 6:315. https://doi.org/10.1186/1556-276x-6-315

    Article  Google Scholar 

  64. Wannapakhe S, Rittidech S, Bubphachot B, Watanabe O (2009) Heat transfer rate of a closed-loop oscillating heat pipe with check valves using silver nanofluid as working fluid. J Mech Sci Technol 23:1576–1582. https://doi.org/10.1007/s12206-009-0424-2

    Article  Google Scholar 

  65. Lu L, Liu Z-H, Xiao H-S (2011) Thermal performance of an open thermosyphon using nanofluids for high-temperature evacuated tubular solar collectors: part 1: indoor experiment. Sol Energy 85:379–387. https://doi.org/10.1016/j.solener.2010.11.008

    Article  Google Scholar 

  66. Kang SW, Wei WC, Tsai SH, Yang SY (2006) Experimental investigation of silver nano-fluid on heat pipe thermal performance. Appl Therm Eng 26. https://doi.org/10.1016/j.applthermaleng.2006.02.020

  67. Z-h L, J-g X, Bao R (2007) Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface. Int J Multiphase Flow 33:1284–1295. https://doi.org/10.1016/j.ijmultiphaseflow.2007.06.009

    Article  Google Scholar 

  68. Z-h L, Yang X-f, Wang G-s, Guo G-l (2010) Influence of carbon nanotube suspension on the thermal performance of a miniature thermosyphon. Int J Heat Mass Transf 53:1914–1920. https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.065

    Article  Google Scholar 

  69. Yang X-F, Liu Z-H (2011) Application of functionalized nanofluid in thermosyphon. Nanoscale Res Lett 6:494. https://doi.org/10.1186/1556-276x-6-494

    Article  Google Scholar 

  70. Mueller-Steinhagen H (2000) Heat exchanger fouling: mitigation and cleaning technologies. IChemE 85:245–255

    Google Scholar 

  71. Bott TR (1995) Fouling of heat exchangers. Chapter 3. Elsevier, Amsterdam

  72. Bouris D, Konstantinidis E, Balabani S, Castiglia D, Bergeles G (2005) Design of a novel, intensified heat exchanger for reduced fouling rates. Int J Heat Mass Transf 48:3817–3832

    Article  Google Scholar 

  73. Kazi S, Teng K, Zakaria M, Sadeghinezhad E, Bakar M (2015) Study of mineral fouling mitigation on heat exchanger surface. Desalination 367:248–254

    Article  Google Scholar 

  74. Kazi S, Duffy G, Chen X (2010) Mineral scale formation and mitigation on metals and a polymeric heat exchanger surface. Appl Therm Eng 30:2236–2242

    Article  Google Scholar 

  75. Markowski M, Urbaniec K (2005) Optimal cleaning schedule for heat exchangers in a heat exchanger network. Appl Therm Eng 25:1019–1032

    Article  Google Scholar 

  76. Nikkhah V, Sarafraz M, Hormozi F, Peyghambarzadeh S (2015) Particulate fouling of CuO–water nanofluid at isothermal diffusive condition inside the conventional heat exchanger-experimental and modeling. Exp Thermal Fluid Sci 60:83–95

    Article  Google Scholar 

  77. Kline Sa, McClintock F A., 1953,“Describing Uncertainties in Single-Sample Experiments,” ASME Mech. Eng 75: 3–8

  78. Tsai C, Chien H, Ding P, Chan B, Luh T, Chen P (2004) Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance. Mater Lett 58:1461–1465

    Article  Google Scholar 

  79. Ma H, Wilson C, Borgmeyer B, Park K, Yu Q, Choi S, Tirumala M (2006) Effect of nanofluid on the heat transport capability in an oscillating heat pipe. Appl Phys Lett 88:143116

    Article  Google Scholar 

  80. Benjamin R, Balakrishnan A (1997) Nucleation site density in pool boiling of saturated pure liquids: effect of surface microroughness and surface and liquid physical properties. Exp Thermal Fluid Sci 15:32–42

    Article  Google Scholar 

  81. Kang S-W, Wei W-C, Tsai S-H, Yang S-Y (2006) Experimental investigation of silver nano-fluid on heat pipe thermal performance. Appl Therm Eng 26:2377–2382

    Article  Google Scholar 

  82. Qu J, Wu H-y, Cheng P (2010) Thermal performance of an oscillating heat pipe with al 2 O 3–water nanofluids. Int Comm Heat Mass Transf 37:111–115

    Article  Google Scholar 

  83. Liu Z, Zhu Q (2011) Application of aqueous nanofluids in a horizontal mesh heat pipe. Energy Convers Manag 52:292–300

    Article  Google Scholar 

  84. Sarafraz M, Hormozi F (2016) Comparatively experimental study on the boiling thermal performance of metal oxide and multi-walled carbon nanotube nanofluids. Powder Technol 287:412–430

    Article  Google Scholar 

  85. Salari E, Peyghambarzadeh SM, Sarafraz MM, Hormozi F (2016) Boiling thermal performance of TiO2 aqueous nanofluids as a coolant on a disc copper block. Periodica Polytechnica chemical. Engineering 60:106

    Google Scholar 

  86. Sarafraz M, Hormozi F (2016) Experimental investigation on the pool boiling heat transfer to aqueous multi-walled carbon nanotube nanofluids on the micro-finned surfaces. Int J Therm Sci 100:255–266

    Article  Google Scholar 

  87. Sarafraz M, Hormozi F, Silakhori M, Peyghambarzadeh S (2016) On the fouling formation of functionalized and non-functionalized carbon nanotube nano-fluids under pool boiling condition. Appl Therm Eng 95:433–444

    Article  Google Scholar 

  88. Sarafraz M, Nikkhah V, Madani S, Jafarian M, Hormozi F (2017) Low-frequency vibration for fouling mitigation and intensification of thermal performance of a plate heat exchanger working with CuO/water nanofluid. Appl Therm Eng 121:388–399

    Article  Google Scholar 

  89. Sarafraz M, Peyghambarzadeh S, Fazel SA, Vaeli N (2013) Nucleate pool boiling heat transfer of binary nano mixtures under atmospheric pressure around a smooth horizontal cylinder. Periodica Polytechnica chemical. Engineering 57:71

    Google Scholar 

  90. Sarafraz M, Peyghambarzadeh S, Vaeli N (2012) Subcooled flow boiling heat transfer of ethanol aqueous solutions in vertical annulus space. Chem Ind Chem Eng Q 18:315–327

    Article  Google Scholar 

  91. Sarafraz MM (2012) Nucleate pool boiling of aqueous solution of citric acid on a smoothed horizontal cylinder. Heat Mass Transf 48:611–619

    Article  Google Scholar 

  92. Sarafraz M, Kiani T, Hormozi F (2016) Critical heat flux and pool boiling heat transfer analysis of synthesized zirconia aqueous nano-fluids. Int Comm Heat Mass Transfer 70:75–83

    Article  Google Scholar 

  93. Kim H (2011) Enhancement of critical heat flux in nucleate boiling of nanofluids: a state-of-art review. Nanoscale Res Lett 6:415

    Article  Google Scholar 

  94. Sarafraz M, Hormozi F, Peyghambarzadeh S (2016) Pool boiling heat transfer to aqueous alumina nano-fluids on the plain and concentric circular micro-structured (CCM) surfaces. Exp Thermal Fluid Sci 72:125–139

    Article  Google Scholar 

  95. Kim SJ, Bang IC, Buongiorno J, Hu L (2007) Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int J Heat Mass Transf 50:4105–4116

    Article  Google Scholar 

  96. Sadeghinezhad E, Mehrali M, Rosen MA, Akhiani AR, Latibari ST, Mehrali M, Metselaar HSC (2016) Experimental investigation of the effect of graphene nanofluids on heat pipe thermal performance. Appl Therm Eng 100:775–787

    Article  Google Scholar 

  97. Amiri A, Sadri R, Shanbedi M, Ahmadi G, Chew B, Kazi S, Dahari M (2015) Performance dependence of thermosyphon on the functionalization approaches: an experimental study on thermo-physical properties of graphene nanoplatelet-based water nanofluids. Energy Convers Manag 92:322–330

    Article  Google Scholar 

  98. Nikkhah V, Sarafraz M, Hormozi F (2015) Application of spherical copper oxide (II) water nano-fluid as a potential coolant in a boiling annular heat exchanger. Chem Biochem Eng Q 29:405–415

    Article  Google Scholar 

  99. Sarafraz M, Hormozi F (2014) Application of thermodynamic models to estimating the convective flow boiling heat transfer coefficient of mixtures. Exp Thermal Fluid Sci 53:70–85

    Article  Google Scholar 

  100. Sarafraz MM, Hormozi F (2014) Forced convective and nucleate flow boiling heat transfer to alumnia nanofluids. Periodica Polytechnica chemical. Engineering 58:37

    Google Scholar 

  101. Kim S, Bang IC, Buongiomo J, Hu L (2007) Study of pool boiling and critical heat flux enhancement in nanofluids. Bull Pol Acad Sci 55(2):211–216

Download references

Acknowledgements

Authors of this work tend to dedicate this article to imam Mahdi and appreciate Semnan University for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Sarafraz.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest for this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arya, A., Sarafraz, M.M., Shahmiri, S. et al. Thermal performance analysis of a flat heat pipe working with carbon nanotube-water nanofluid for cooling of a high heat flux heater. Heat Mass Transfer 54, 985–997 (2018). https://doi.org/10.1007/s00231-017-2201-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-017-2201-6

Keywords

Navigation