Skip to main content

Advertisement

Log in

Impinging premixed methane-air flame jet of tube burner: thermal performance analysis for varied equivalence ratios

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Thermally efficient gas burners can be designed by optimising the parameters associated with combustion and heat transfer mechanisms. The current study presents the thermal analysis of the premixed methane-air flame jets of circular tube gas burner impinging on a target surface. The effect of flame jet parameters such as mixture Reynolds number, equivalence ratio and burner to target surface spacing on heat transfer characteristics is investigated. The thermal performance is quantified in terms of thermal efficiency. The lean and stoichiometric mixtures release maximum amount of thermal energy. However, in lean flames, a part of the energy released is used for rising the temperature of excess air. Though the combustion is incomplete for fuel rich flames, higher heat transfer is achieved because of higher flame height. The optimal thermal performance is observed when the mixture is near stoichiometric and the burner is spaced from the target surface such that the premixed cone tip just touches the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

a, b :

constants

A :

surface area (m2)

d :

Inner diameter of tube burner (m)

h :

heat transfer coefficient (W/m2-K)

HHV :

higher heating value (J/kg)

k :

thermal conductivity (W/m-K)

L f :

flame height (mm)

l :

length of burner (m)

M :

molecular weight (kg/kmol)

\( \dot{m} \) :

mass flow rate (kg/s)

Nu :

Nusselt number

\( \dot{Q} \) :

rate of heat (W)

q” :

heat flux (W/m2)

r :

radial distance (m)

R :

radius (m)

Re :

Reynolds number

S u :

laminar flame speed (cm/s)

T :

temperature (K)

T f , T adf :

flame temperature, adiabatic flame temperature (K)

v :

velocity (m/s)

Z :

spacing between burner or nozzle and target plate (m)

z :

axial distance (m)

ε :

emissivity

η :

effectiveness

η comb :

combustion efficiency (%)

η ht :

heat transfer efficiency (%)

η th :

thermal efficiency (%)

μ :

absolute viscosity (Pa-s)

ρ :

density (kg/m3)

σ :

Stefan-Boltzmann constant (5.67 × 10−8W/m2K4)

ϕ :

equivalence ratio

0:

stagnation

∞:

ambient

act :

actual

b :

bottom

conv :

convection

f :

fuel

ht :

heat transfer

m :

mean film

max :

maximum

mix :

mixture

nc :

natural convection

rad :

radiation

ref :

reference

stoic :

stoichiometric

t :

top

w :

wall

IR:

Infrared

LPG:

Liquefied Petroleum Gas

MFC:

Mass Flow Controller

PNG:

Piped Natural Gas

SLPM:

Standard Litres Per Minute

TC:

Thermocouple

TCHR:

Thermo Chemical Heat Release

References

  1. Chander S, Ray A (2005) Flame impingement heat transfer: a review. Energy Convers Manag 46(18–19):2803–2837

    Article  Google Scholar 

  2. Viskanta R (1993) Heat transfer to impinging isothermal gas and flame jets. Exp Thermal Fluid Sci 6:111–134

    Article  Google Scholar 

  3. Baukal CE Jr, Gebhart B (1996) A review of empirical flame impingement heat transfer correlations. Int J Heat Fluid Flow 17(14):386–396

    Article  MATH  Google Scholar 

  4. Baukal CE, Gebhart B (1996) A review of semi-analytical solutions for flame impingement heat transfer. Int J Heat Mass Transf 39:2989–3002

    Article  MATH  Google Scholar 

  5. Van der Meer TH (1991) Stagnation point heat transfer from turbulent low Reynolds number jets and flame jets. Exp Thermal Fluid Sci 4:115–126

    Article  Google Scholar 

  6. Chander S, Ray A (2006) Influence of burner geometry on heat transfer characteristics of methane/air flame impinging on a flat surface. Exp Heat Transfer 19:15–38

    Article  Google Scholar 

  7. Chander S, Ray A (2007) Heat transfer characteristics of three interacting methane/air flame jets impinging on a flat surface. Int J Heat Mass Transf 50(3–4):640–653

    Article  Google Scholar 

  8. Hindasageri V, Vedula RP, Prabhu SV (2014) Heat transfer distribution for impinging methane–air premixed flame jets. Appl Therm Eng 73(1):459–471

    Article  Google Scholar 

  9. Hindasageri V, Vedula RP, Prabhu SV (2015) Heat transfer distribution for three interacting methane–air premixed impinging flame jets. Int J Heat Mass Transf 88:914–925

    Article  Google Scholar 

  10. Hou SS, Ko YC (2005) Influence of oblique angle and heating height on flame structure, temperature field and efficiency of an impinging laminar jet flame. Energy Convers Manag 46(6):941–958

    Article  Google Scholar 

  11. Agrawal GK, Chakraborty S, Som SK (2010) Heat transfer characteristics of premixed flame impinging upwards to plane surfaces inclined with the flame jet axis. Int J Heat Mass Transf 53(9):1899–1907

    Article  MATH  Google Scholar 

  12. Kuntikana P, Prabhu SV (2016) Heat transfer characteristics of premixed methane–air flame jet impinging obliquely onto a flat surface. Int J Heat Mass Transf 101:133–146

    Article  Google Scholar 

  13. Dong L, Leung CW, Cheung CS (2002) Heat transfer characteristics of premixed butane/air flame jet impinging on an inclined flat surface. Heat Mass Transf 39:19–26

    Article  Google Scholar 

  14. Dong L, Leung CW, Cheung CS (2002) Heat transfer from an impinging premixed butane-air slot flame jet. Int J Heat Mass Transf 45:979–992

    Article  Google Scholar 

  15. Zhao Z, Wong TT, Leung CW (2004) Impinging premixed butane-air circular laminar flame jet–influence of impingement plate on heat transfer characteristics. Int J Heat Mass Transf 47:5021–5031

    Article  Google Scholar 

  16. Huang XQ, Leung CW, Chan CK, Probert SD (2006) Thermal characteristics of a premixed impinging circular laminar-flame jet with induced swirl. Appl Energy 83:401–411

    Article  Google Scholar 

  17. Kwok LC, Leung CW, Cheung CS (2005) Heat transfer characteristics of an array of impinging pre-mixed slot flame jets. Int J Heat Mass Transf 48:1727–1738

    Article  Google Scholar 

  18. Tuttle SG, Webb BW, McQuay MQ (2005) Convective heat transfer from a partially premixed impinging flame jet. Part I: time-averaged results. Int J Heat Mass Transf 48:1236–1251

    Article  Google Scholar 

  19. Remie MJ, Särnerb G, Cremers MFG, Omrane A, Schreel KRAM, Aldén LEM, de Goey LPH (2008) Heat-transfer distribution for an impinging laminar flame jet to a flat plate. Int J Heat Mass Transf 51(11–12):3144–3152

    Article  MATH  Google Scholar 

  20. Mishra DP (2008) Fundamentals of combustion. Prentice Hall of India, New Delhi, pp 123–129

    Google Scholar 

  21. Zuckerman N, Lior N (2006) Jet impingement heat transfer: physics, correlations, and numerical modeling. Adv Heat Tran 39:565–631

    Article  Google Scholar 

  22. Remie MJ, Cremers MFG, Schreel KRAM, De Goey LPH (2006) Flame jet properties of Bunsen-type flames. Combust Flame 147(3):163–170

    Article  Google Scholar 

  23. Cremers MFG, Remie MJ, Schreel KRAM, de Goey LPH (2010) Thermochemical heat release of laminar stagnation flames of fuel and oxygen. Int J Heat Mass Transf 53(5–6):952–961

    Article  MATH  Google Scholar 

  24. Prasad B, Ray B, Ravikrishna RV (2014) Thermal efficiency of LPG and PNG-fired burners: experimental and numerical studies. Fuel 116:709–715

    Article  Google Scholar 

  25. Zhen HS, Leung CW, Wong TT (2014) Improvement of domestic cooking flames by utilizing swirling flows. Fuel 119:153–156

    Article  Google Scholar 

  26. Ko YC, Lin TH (2003) Emissions and efficiency of a domestic gas stove burning natural gases with various compositions. Energy Convers Manag 44:3001–3014

    Article  Google Scholar 

  27. Hou SS, Chou CH (2013) Parametric study of high-efficiency and low-emission gas burner. Adv Mater Sci Eng Article ID 154957, 7 Pages

  28. Namkhat A, Jugjai S (2010) Primary air entrainment characteristics of self-aspirating burners: model and experiments. Energy 35:1701–1708

    Article  Google Scholar 

  29. Wald AE, Salisbury JW (1995) Thermal infrared directional emissivity of powdered quartz. J Geophys Res 100(B12):665–675

    Article  Google Scholar 

  30. Moffat RJ (1986) Using uncertainty analysis in the planning of an experiment. J Fluids Eng Trans ASME 107(2):173–178

    Article  Google Scholar 

  31. Hindasageri V, Vedula RP, Prabhu SV (2013) Thermocouple error correction for measuring the flame temperature with determination of emissivity and heat transfer coefficient. Rev Sci Instrum 84(2):024902

    Article  Google Scholar 

  32. Kuntikana P, Prabhu SV (2016) Isothermal air jet and premixed flame jet impingement: heat transfer characterisation and comparison. Int J Therm Sci 100:401–415

    Article  Google Scholar 

  33. Jambunathan K, Lai E, Moss MA, Button BL (1992) A review of heat transfer data for single circular jet impingement. Int J Heat Fluid Flow 13(2):106–115

    Article  Google Scholar 

  34. Bosschaart JK, de Goey LPH (2004) The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method. Combust Flame 136:261–269

    Article  Google Scholar 

  35. Law CK, Makino A, Lu TF (2006) On the off-stoichiometric peaking of adiabatic flame temperature. Combust Flame 145(4):808–819

    Article  Google Scholar 

  36. Ricou FP, Spalding DB (1961) Measurements of entrainment by axisymmetrical turbulent jets. J Fluid Mech 11:21–32

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Authors thank Mr. Rahul Shirsat for his help in building the experimental setup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Prabhu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Determination of rate of heat transfer from impinging flame jet to square target plate

The steady state wall heat flux is Gaussian in nature. A Gaussian curve of the form \( {q}^{{\prime\prime} }(r)={q}_0^{{\prime\prime}}\mathit{\exp}\left(-a{\left(\frac{r}{R}\right)}^2+b\right) \) is fitted to the heat flux data and further analysed to obtain rate of heat transfer from the flame to plate.

$$ {\dot{Q}}_{ht}={\int}_A{q}^{{\prime\prime} } dA $$
$$ \kern1.75em =\underset{Circular\ Part}{\underbrace{\int_0^{2\pi }{\int}_0^R{q}^{{\prime\prime} }(r).r. d\theta . d r\ }}+\underset{\begin{array}{c} Corners\ of\ the\ plate\\ {} excluding\ circle\end{array}}{\underbrace{\left(\left(4-\pi \right){R}^2{q}^{{\prime\prime} }(R)\right)}} $$
$$ \kern1.75em ={\int}_0^{2\pi }{\int}_0^R{q}_0^{{\prime\prime}}\mathit{\exp}\left(-a{\left(\frac{r}{R}\right)}^2+b\right).r. d\theta . d r+\left(\left(4-\pi \right){R}^2{q}^{{\prime\prime} }(R)\right) $$
$$ \kern1.75em =2\pi q{{\prime\prime}}_0{e}^b{\int}_0^R\mathit{\exp}\left(-a{\left(\frac{r}{R}\right)}^2\right).r. dr+\left(\left(4-\pi \right){R}^2{q}^{{\prime\prime} }(R)\right) $$
(12)

Let r2 = u, then 2r. dr = du.

$$ {\dot{Q}}_{ht}=\frac{2\pi {q}_0^{{\prime\prime} }{e}^b}{2}{\int}_0^{R^2}\mathit{\exp}\left(\frac{- au}{R^2}\right). du+\left(\left(4-\pi \right){R}^2{q}^{{\prime\prime} }(R)\right) $$
$$ \kern1.75em =\pi {q}_0^{{\prime\prime} }{e}^b{\left[\frac{-{R}^2}{a}\mathit{\exp}\left(\frac{- au}{R^2}\right)\right]}_0^{R^2}+\left(\left(4-\pi \right){R}^2{q}^{{\prime\prime} }(R)\right) $$
$$ \kern1.75em =\frac{-\pi {q}_0^{{\prime\prime} }{e}^b{R}^2}{a}\left[{e}^{-a}-1\right]+\left(\left(4-\pi \right){R}^2{q}^{{\prime\prime} }(R)\right) $$
$$ \kern1.75em =\frac{\pi q{{\prime\prime}}_0{R}^2}{a}\left[{e}^b-{e}^{\left(b-a\right)}\right]+\left(\left(4-\pi \right){R}^2{q}^{{\prime\prime} }(R)\right) $$
(13)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuntikana, P., Prabhu, S.V. Impinging premixed methane-air flame jet of tube burner: thermal performance analysis for varied equivalence ratios. Heat Mass Transfer 55, 1301–1315 (2019). https://doi.org/10.1007/s00231-018-2507-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-018-2507-z

Navigation