Skip to main content
Log in

The effect of Total flowrate on the cooling performance of swirling coaxial impinging jets

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Thermal management ability of swirling coaxial confined impinging air jets (SCCIAJ) are experimentally studied for different total flowrate. The coaxial structure of the jet is provided by a nozzle which is a cylindrical material having an inner round flow passage and three circumferential helical flow passages. Experiments are conducted for various values of dimensionless nozzle-to-plate distance (H / D = 0.5, 1.0, 1.5 and 2.0) and total flowrate (40, 50 and 60 LPM (liter per minute)). During the experiments, flowrate ratio (Q*) and heating power are set to constant values of 0.75 and 18.2 W, respectively. It is revealed that both the heat transfer rate and radial uniformity are improved by increasing total flowrate, while increasing spacing between the nozzle outlet and the target plate adversely affects the magnitude of Nusselt numbers. In this context, the condition of Qtot = 60 LPM with H / D = 0.5 presents the optimum case for heat transfer. The results obtained are also compared with the ones of the classical circular jet (Q* = 0) depending on the temperature distribution of the impingement surface. It is concluded that swirling coaxial jets with appreciate working conditions can be used as an effective tool for electronics cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A r :

Cross sectional area of circular flow passage of the nozzle [m2]

D :

Nozzle outer diameter [m]

H :

Spacing from nozzle outlet to the target surface [m]

h :

Local convective heat transfer coefficient [W m−2 K−1]

Q :

Volumetric flowrate [m3 s−1]

Q∗:

Flowrate ratio, Q ∗  = Qs/Qtot

r :

Radial distance [m]

r∗:

Dimensionless radial distance, r ∗  = r/D

T s :

Local temperature on the target surface [K]

u m :

Mean velocity [m s−1]

ρ :

Density [kg m−3]

μ :

Dynamic viscosity [kg m−1 s−1]

s :

Swirling

st :

Center point of the target surface (or stagnation point)

tot :

Total

avg :

Area-weighted average

References

  1. Markal B, Aydin O, Avci M (2012) Exergy analysis of a counter-flow Ranque-Hilsch vortex tube having different helical vortex generators. Int J Exergy 10(2):228–238. https://doi.org/10.1504/IJEX.2012.045867

    Article  Google Scholar 

  2. Chien KH, Lin YT, Chen YR, Yang KS, Wang CC (2012) A novel design of pulsating heat pipe with fewer turns applicable to all orientations. Int J Heat Mass Transf 55:5722–5728. https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.068

    Article  Google Scholar 

  3. Markal B, Aydin O, Avci M (2017) Prediction of heat transfer coefficient in saturated flow boiling heat transfer in parallel rectangular microchannel heat sinks: an experimental study. Heat Transf Eng 38(16):1415–1428. https://doi.org/10.1080/01457632.2016.1255038

    Article  Google Scholar 

  4. Markal B (2018) Experimental investigation of heat transfer characteristics and wall pressure distribution of swirling coaxial confined impinging air jets. Int J Heat Mass Transf 124:517–532. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.101

    Article  Google Scholar 

  5. Markal B, Aydin O (2018) Experimental investigation of coaxial impinging air jets. Appl Therm Eng 141:1120–1130. https://doi.org/10.1016/j.applthermaleng.2018.06.066

    Article  Google Scholar 

  6. Ahmed ZU, Al-Abdeli YM, Guzzomi FG (2016) Heat transfer characteristics of swirling and non-swirling impinging turbulent jets. Int J Heat Mass Transf 102:991–1003. https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.037

    Article  Google Scholar 

  7. Ahmed ZU, Al-Abdeli YM, Guzzomi FG (2017) Flow field and thermal behaviour in swirling and non-swirling turbulent impinging jets. Int J Therm Sci 114:241–256. https://doi.org/10.1016/j.ijthermalsci.2016.12.013

    Article  Google Scholar 

  8. Huang L, EL-Genk MS (1998) Heat transfer and flow visualization experiments of swirling, multi-channel, and conventional impinging jets. Int J Heat Mass Transf 41:583–600. https://doi.org/10.1016/S0017-9310(97)00123-3

    Article  Google Scholar 

  9. Colucci DW, Viskanta R (1996) Effect of nozzle geometry on local convective heat transfer to a confined impinging air jet. Exp Thermal Fluid Sci 13:71–80. https://doi.org/10.1016/0894-1777(96)00015-5

    Article  Google Scholar 

  10. Gao X, Sunden B (2003) Experimental investigation of the heat transfer characteristics of confined impinging slot jets. Exp Heat Transf 16:1–18. https://doi.org/10.1080/08916150390126441

    Article  Google Scholar 

  11. Nuntadusit C, Wae-hayee M, Bunyajitradulya A, Eiamsa-ard S (2012) Visualization of flow and heat transfer characteristics for swirling impinging jet. Int Commun Heat Mass Transf 39:640–648. https://doi.org/10.1016/j.icheatmasstransfer.2012.03.002

    Article  Google Scholar 

  12. Yu YZ, Zhang JZ, Xu HS (2014) Convective heat transfer by a row of confined air jets from round holes equipped with triangular tabs. Int J Heat Mass Transf 72:222–233. https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.004

    Article  Google Scholar 

  13. Jambunathan K, Lai E, Moss MA, Button BL (1992) A review of heat transfer data for single circular jet impingement. Int J Heat Fluid Flow 13(2):106–115. https://doi.org/10.1016/0142-727X(92)90017-4

    Article  Google Scholar 

  14. Shukla AK, Dewan A (2017) Flow and thermal characteristics of jet impingement: comprehensive review. Int J Heat Technol 35:153–166. https://doi.org/10.18280/ijht.350121

    Article  Google Scholar 

  15. Ward J, Mahmood M (1982) Heat transfer from a turbulent, swirling impinging jet. Proc 7th Int Heat Transf Conf 3:401–407

    Google Scholar 

  16. Lee DH, Won SY, Kim YT, Chung YS (2002) Turbulent heat transfer from a flat surface to a swirling round impinging jet. Int J Heat Mass Transf 45(1):223–227. https://doi.org/10.1016/S0017-9310(01)00135-1

    Article  Google Scholar 

  17. Yuan ZX, Chen YY, Jiang JG, Ma CF (2006) Swirling effect of jet impingement on heat transfer from a flat surface to CO2 stream. Exp Thermal Fluid Sci 31:55–60. https://doi.org/10.1016/j.expthermflusci.2005.12.007

    Article  Google Scholar 

  18. Yang HQ, Kim T, Lu TJ, Ichimiya K (2010) Flow structure, wall pressure and heat transfer characteristics of impinging annular jet with/without steady swirling. Int J Heat Mass Transf 53:4092–4100. https://doi.org/10.1016/j.ijheatmasstransfer.2010.05.029

    Article  Google Scholar 

  19. Ianiro A, Cardone G (2012) Heat transfer rate and uniformity in multichannel swirling impinging jets. Appl Therm Eng 49:89–98. https://doi.org/10.1016/j.applthermaleng.2011.10.018

    Article  Google Scholar 

  20. Eiamsa-ard S, Nanan K, Wongcharee K (2015) Heat transfer visualization of co/counter-dual swirling impinging jets by thermochromic liquid crystal method. Int J Heat Mass Transf 86:600–621. https://doi.org/10.1016/j.ijheatmasstransfer.2015.03.031

    Article  Google Scholar 

  21. Celik N, Eren H (2009) Heat transfer due to impinging co-axial jets and the jets’ fluid flow characteristics. Exp Thermal Fluid Sci 33:715–727. https://doi.org/10.1016/j.expthermflusci.2009.01.007

    Article  Google Scholar 

  22. Celik N (2011) Effects of the surface roughness on heat transfer of perpendicularly impinging co-axial jet. Heat Mass Transf 47:1209–1217. https://doi.org/10.1007/s00231-011-0785-9

    Article  Google Scholar 

  23. Habib MA, Whitelaw JH (1980) Velocity characteristics of confined coaxial jets with and without swirl. J Fluids Eng 102:47–53. https://doi.org/10.1115/1.3240623

    Article  Google Scholar 

  24. Memar H, Holman JP, Dellenback PA (1993) The effect of a swirled annular jet on convective heat transfer in confined coaxial jet mixing. Int J Heat Mass Transf 36:3921–3930. https://doi.org/10.1016/0017-9310(93)90142-S

    Article  Google Scholar 

  25. Mahmud T, Truelove JS, Wall TF (1987) Flow characteristics of swirling coaxial jets from divergent nozzles. J Fluids Eng 109:275–282. https://doi.org/10.1115/1.3242661

    Article  Google Scholar 

  26. Adzlan A, Gotoda H (2012) Experimental investigation of vortex breakdown in a coaxial swirling jet with a density difference. Chem Eng Sci 80:174–181. https://doi.org/10.1016/j.ces.2012.05.027

    Article  Google Scholar 

  27. Balakrishnan P, Srinivasan K (2017) Jet noise reduction using co-axial swirl flow with curved vanes. Appl Acoust 126:149–161. https://doi.org/10.1016/j.apacoust.2017.05.009

    Article  Google Scholar 

  28. Balakrishnan P, Srinivasan K (2018) Influence of swirl number on jet noise reduction using flat vane swirlers. Appl Acoust 73:256–268. https://doi.org/10.1016/j.ast.2017.11.039

    Article  Google Scholar 

  29. Dinesh KKJR, Kirkpatrick MP, Jenkins KW (2010) Investigation of the influence of swirl on a confined coannular swirl jet. Comput Fluids 39:756–767. https://doi.org/10.1016/j.compfluid.2009.12.004

    Article  MATH  Google Scholar 

  30. Chouaieb S, Kriaa W, Mhiri H, Bournot P (2017) Swirl generator effect on a confined coaxial jet characteristics. Int J Hydrog Energy 42:29014–29025. https://doi.org/10.1016/j.ijhydene.2017.08.061

    Article  Google Scholar 

  31. Kline SJ, McClintock FA (1953) Describing uncertainties in single-sample experiments. Mech Eng 75(1):3–8

    Google Scholar 

  32. Choo KS, Kim SJ (2010) Comparison of thermal characteristics of confined and unconfined impinging jets. Int J Heat Mass Transf 53:3366–3371. https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.023

    Article  Google Scholar 

  33. Eiamsa-ard S, Wongcharee K, Eiamsa-ard P, Thianpong C (2010) Heat transfer enhancement in a tube using delta-winglet twisted tape inserts. Appl Therm Eng 30:310–318. https://doi.org/10.1016/j.applthermaleng.2009.09.006

    Article  Google Scholar 

  34. Ozmen Y (2011) Confined impinging twin air jets at high Reynolds numbers. Exp Thermal Fluid Sci 35:355–363. https://doi.org/10.1016/j.expthermflusci.2010.10.006

    Article  Google Scholar 

  35. Ko NWM, Kwan ASH (1976) The initial region of subsonic coaxial jets. J Fluids Mech 73(2):305–332. https://doi.org/10.1017/S0022112076001389

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burak Markal.

Ethics declarations

Conflict of interest

The author declared that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markal, B. The effect of Total flowrate on the cooling performance of swirling coaxial impinging jets. Heat Mass Transfer 55, 3275–3288 (2019). https://doi.org/10.1007/s00231-019-02653-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-019-02653-7

Navigation