Skip to main content
Log in

Startup characteristics of an ammonia loop heat pipe with a rectangular evaporator

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Flat-plate loop heat pipe (FLHP) is a passive two-phase heat transfer device. Comparing with traditional LHP with a cylindrical evaporator, it can be directly connected to a flat heat source without the employment of a saddle, which can effectively reduce the system thermal resistance and enhance the temperature uniformity. In this work, a stainless steel-ammonia FLHP was developed, and extensive experiments have been conducted to investigate its startup characteristics with the evaporator in the horizontal and vertical positions. Experimental results show that the FLHP exhibits excellent startup performance. It can successfully start up at a small heat load as low as 2 W with no obvious temperature overshoot. In a wide power range of 5–35 W, the FLHP generally starts up in only one situation, much simpler than the startup of a LHP with a cylindrical evaporator. For this rectangular evaporator, the heat leak from the evaporator to the compensation chamber (CC) becomes very small. As a result, the vapor can easily exit the condenser in most cases in the power range of 5–35 W, leading to a 100% utilization efficiency of the condenser and the resultant satisfactory thermal performance of the FLHP. In addition, the startup performance and the system thermal resistance of the FLHP are insensitive to the evaporator orientation, promising great application potential in future electronics cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Zhao Y, Wang N, Yan T, Liang J, Chen H (2021) Experimental study on operating characteristics of a cryogenic loop heat pipe without additional power consumption. Appl Therm Eng 184:116262. https://doi.org/10.1016/j.applthermaleng.2020.116262

    Article  Google Scholar 

  2. Wang H, Lin G, Shen X, Bai L, Yang R, Wen D (2020) Effect of evaporator/condenser elevations on a loop heat pipe with non-condensable gas. Appl Therm Eng 180:115711. https://doi.org/10.1016/j.applthermaleng.2020.115711

    Article  Google Scholar 

  3. Zhang H, Jiang C, Zhang Z, Liu Z, Luo X, Liu W (2020) A study on thermal performance of a pump-assisted loop heat pipe with ammonia as working fluid. Appl Therm Eng 175:115342. https://doi.org/10.1016/j.applthermaleng.2020.115342

    Article  Google Scholar 

  4. Li X, Xu B, Zhang G, Wang Y, Dai B, Zhu K, Liu S, Zhang Z (2021) Experimental investigation on the impact of pressure head of evaporation during the loop heat pipe operation. Appl Therm Eng 185:116455. https://doi.org/10.1016/j.applthermaleng.2020.116455

    Article  Google Scholar 

  5. Zhou L, Qu ZG, Chen G, Huang JY, Miao JY (2019) One-dimensional numerical study for loop heat pipe with two-phase heat leak model. Int J Therm Sci 137:467–481. https://doi.org/10.1016/j.ijthermalsci.2018.12.019

    Article  Google Scholar 

  6. Wang H, Lin G, Shen X, Bai L, Wen D (2019) Effect of evaporator tilt on a loop heat pipe with non-condensable gas. Int J Heat Mass Transf 128:1072–1080. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.033

    Article  Google Scholar 

  7. Ku J (1999) Operating characteristics of loop heat pipes. SAE International 108:503–519. https://doi.org/10.4271/1999-01-2007

    Article  Google Scholar 

  8. Ambirajan A, Adoni AA, Vaidya JS, Rajendran AA, Kumar D, Dutta P (2012) Loop heat pipes: a review of fundamentals, operation, and design. Heat Transf Eng 33:387–405. https://doi.org/10.1080/01457632.2012.614148

    Article  Google Scholar 

  9. Setyawan I, Putra N, Hakim II (2018) Experimental investigation of the operating characteristics of a hybrid loop heat pipe using pump assistance. Appl Therm Eng 130:10–16. https://doi.org/10.1016/j.applthermaleng.2017.11.007

    Article  Google Scholar 

  10. Maydanik YuF (2005) Loop heat pipes. Appl Therm Eng 25:635–657. https://doi.org/10.1016/j.applthermaleng.2004.07.010

    Article  Google Scholar 

  11. Nakamura K, Odagiri K, Nagano H (2016) Study on a loop heat pipe for a long-distance heat transport under anti-gravity condition. Appl Therm Eng 107:167–174. https://doi.org/10.1016/j.applthermaleng.2016.06.162

    Article  Google Scholar 

  12. Siedel B, Sartre V, Lefèvre F (2015) Literature review: Steady-state modelling of loop heat pipes. Appl Therm Eng 75:709–723. https://doi.org/10.1016/j.applthermaleng.2014.10.030

    Article  Google Scholar 

  13. Goncharov K, Golovin O, Kolesnikov V, Xiaoxiang Z (2004) Development and flight operation of LHP used for cooling nickel-cadmium batteries in Chinese meteorological satellites FY-1, in: Proc. 13th Int. Heat Pipe Conf Shanghai, China, China Astronautic Publishing House Beijing

  14. Wang G, Mishkinis D, Nikanpour D (2008) Capillary heat loop technology: Space applications and recent Canadian activities. Appl Therm Eng 28:284–303. https://doi.org/10.1016/j.applthermaleng.2006.02.027

    Article  Google Scholar 

  15. Rodriguez J, Na-Nakornpanom A (2012) In-Flight Performance of the TES Loop Heat Pipe Heat Rejection System - Seven Years In Space, in: 42nd International Conference on Environmental Systems, Am Instit Aeronaut Astronaut 1–10. https://doi.org/10.2514/6.2012-3500

  16. Zhang H, Li G, Chen L, Man G, Miao J, Ren X, He J, Huo Y (2019) Development of Flat-Plate Loop Heat Pipes for Spacecraft Thermal Control. Microgravity Sci Technol 31:435–443. https://doi.org/10.1007/s12217-019-09716-8

    Article  Google Scholar 

  17. Bahiraei M, Heshmatian S (2018) Electronics cooling with nanofluids: A critical review. Energy Convers Manage 172:438–456. https://doi.org/10.1016/j.enconman.2018.07.047

    Article  Google Scholar 

  18. Li G, Zhou T, Tian X (2021) Li, A new cooling strategy for edge computing servers using compact looped heat pipe. Appl Therm Eng 187:116599. https://doi.org/10.1016/j.applthermaleng.2021.116599

    Article  Google Scholar 

  19. Pastukhov VG, Maidanik YuF, Vershinin CV, Korukov MA (2003) Miniature loop heat pipes for electronics cooling. Appl Therm Eng 23:1125–1135. https://doi.org/10.1016/S1359-4311(03)00046-2

    Article  Google Scholar 

  20. Bai L, Tao Y, Guo Y, Lin G (2020) Startup characteristics of a dual compensation chamber loop heat pipe with an extended bayonet tube. Int J Heat Mass Transf 148:119066. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119066

    Article  Google Scholar 

  21. Joung W, Yu T, Lee J (2008) Experimental study on the loop heat pipe with a planar bifacial wick structure. Int J Heat Mass Transf 51:1573–1581. https://doi.org/10.1016/j.ijheatmasstransfer.2007.07.048

    Article  Google Scholar 

  22. Bai L, Fu J, Lin G, Zhou C, Wen D (2019) Quiet power-free cooling system enabled by loop heat pipe. Appl Therm Eng 155:14–23. https://doi.org/10.1016/j.applthermaleng.2019.03.147

    Article  Google Scholar 

  23. Zhang Z, Zhang H, Ma Z, Liu Z, Liu W (2020) Experimental study of heat transfer capacity for loop heat pipe with flat disk evaporator. Appl Therm Eng 173:115183. https://doi.org/10.1016/j.applthermaleng.2020.115183

    Article  Google Scholar 

  24. Liu Z, Wang D, Jiang C, Yang J, Liu W (2015) Experimental study on loop heat pipe with two-wick flat evaporator. Int J Therm Sci 94:9–17. https://doi.org/10.1016/j.ijthermalsci.2015.02.007

    Article  Google Scholar 

  25. Wang D, Liu Z, Shen J, Jiang C, Chen B, Yang J, Tu Z, Liu W (2014) Experimental study of the loop heat pipe with a flat disk-shaped evaporator. Exp Thermal Fluid Sci 57:157–164. https://doi.org/10.1016/j.expthermflusci.2014.04.017

    Article  Google Scholar 

  26. Anand AR (2019) Investigations on effect of noncondensable gas in a loop heat pipe with flat evaporator on deprime. Int J Heat Mass Transf 143:118531. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118531

    Article  Google Scholar 

  27. Maydanik Y, Vershinin S, Chernysheva M, Yushakova S (2011) Investigation of a compact copper–water loop heap pipe with a flat evaporator. Appl Therm Eng 31:3533–3541. https://doi.org/10.1016/j.applthermaleng.2011.07.008

    Article  Google Scholar 

  28. Anand AR, Jaiswal A, Ambirajan A, Dutta P (2018) Experimental studies on a miniature loop heat pipe with flat evaporator with various working fluids. Appl Therm Eng 144:495–503. https://doi.org/10.1016/j.applthermaleng.2018.08.092

    Article  Google Scholar 

  29. Watanabe N, Phan N, Saito Y, Hayashi S, Katayama N, Nagano H (2020) Operating characteristics of an anti-gravity loop heat pipe with a flat evaporator that has the capability of a loop thermosyphon. Energy Convers Manage 205:112431. https://doi.org/10.1016/j.enconman.2019.112431

    Article  Google Scholar 

  30. Celata GP, Cumo M, Furrer M (2010) Experimental tests of a stainless steel loop heat pipe with flat evaporator. Exp Thermal Fluid Sci 34:866–878. https://doi.org/10.1016/j.expthermflusci.2010.02.001

    Article  Google Scholar 

  31. Maydanik YuF, Vershinin SV, Chernysheva MA (2017) Experimental study of an ammonia loop heat pipe with a flat disk-shaped evaporator using a bimetal wall. Appl Therm Eng 126:643–652. https://doi.org/10.1016/j.applthermaleng.2017.07.152

    Article  Google Scholar 

  32. Ji X, Wang Y, Xu J, Huang Y (2017) Experimental study of heat transfer and start-up of loop heat pipe with multiscale porous wicks. Appl Therm Eng 117:782–798. https://doi.org/10.1016/j.applthermaleng.2017.01.084

    Article  Google Scholar 

  33. Zhang Y, Luan T, Jiang H, Liu J (2021) Visualization study on start-up characteristics of a loop heat pipe with a carbon fiber capillary wick. Int J Heat Mass Transf 169:120940. https://doi.org/10.1016/j.ijheatmasstransfer.2021.120940

    Article  Google Scholar 

  34. Zhang H, Lin G, Ding T et al (2005) Investigation of startup behaviors of a loop heat pipe. J Thermophys Heat Transfer 19:509–518. https://doi.org/10.2514/1.12008

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51776012) and the Beijing Natural Science Foundation (No. 3182023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobin Shen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, L., Yang, Z., Shen, X. et al. Startup characteristics of an ammonia loop heat pipe with a rectangular evaporator. Heat Mass Transfer 58, 813–831 (2022). https://doi.org/10.1007/s00231-021-03139-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-021-03139-1

Navigation