Skip to main content
Log in

BK Ca Channels Activating at Resting Potential without Calcium in LNCaP Prostate Cancer Cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Large-conductance Ca2+-dependent K+ (BKCa) channels are activated by intracellular Ca2+ and membrane depolarization in an allosteric manner. We investigated the pharmacological and biophysical characteristics of a BKCa-type K+ channel in androgen-dependent LNCaP (lymph node carcinoma of the prostate) cells with novel functional properties, here termed BKL. K+ selectivity, high conductance, activation by Mg2+ or NS1619, and inhibition by paxilline and penitrem A largely resembled the properties of recombinant BKCa channels. However, unlike conventional BKCa channels, BKL channels activated in the absence of free cytosolic Ca2+ at physiological membrane potentials; the half-maximal activation voltage was shifted by about −100 mV compared with BKCa channels. Half-maximal Ca2+-dependent activation was observed at 0.4 μM for BKL (at −20 mV) and at 4.1 μM for BKCa channels (at +50 mV). Heterologous expression of hSlo1 in LNCaP cells increased the BKL conductance. Expression of hSlo-β1 in LNCaP cells shifted voltage-dependent activation to values between that of BKL and BKCa channels and reduced the slope of the P open (open probability)-voltage curve. We propose that LNCaP cells harbor a so far unknown type of BKCa subunit, which is responsible for the BKL phenotype in a dominant manner. BKL-like channels are also expressed in the human breast cancer cell line T47D. In addition, functional expression of BKL in LNCaP cells is regulated by serum-derived factors, however not by androgens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Anwer K., Toro L., Oberti C., Stefani E., Sanborn B M. 1992. Ca2+-activated K+ channels in pregnant rat myometrium: modulation by a β-adrenergic agent. Am. J. Physiot. 263:1049–1056

    Google Scholar 

  • Basrai D., Kraft R., Bollensdorfff C., Liebmann L., Benndorf K., Patt S. 2002. BK channel blockers inhibit potassium-induced proliferation of human astrocytoma cells Neuro Report. 13:403–407

    CAS  Google Scholar 

  • Brenner R., Perez G.J., Bonev A.D., Eckman D.M., Kosek J.C, Wiler S.W., Patterson A.J., Nelson M.T., Aldrich R.W. 2000. Vasoregulation by the β1 subunit of the calcium-activated potassium channel. Nature 407:870–876

    Article  PubMed  CAS  Google Scholar 

  • Diaz L., Meera P., Amigo J., Stefani E., Alvarez O., Toro L., Latorre R. 1998. Role of the S4 segment in a voltage-dependent calcium-sensitive potassium (hSlo) channel. J. Biol. Chem. 273:32430–32436

    Article  PubMed  Google Scholar 

  • Dworetzky S.I., Boissard C.G., Lum-Ragan J.T., McKay M.C., Post-Munson D.J., Trojnacki. J.T., Chang C.-P., Gribkoff V.K. 1996 Phenotypic alteration of a human BK (hSlo) channel by hSloβ subunit coexpression; changes in blocker sensitivity, activation/relaxation and inactivation kinetics, and protein kinase A modulation. J. Neurosci. 16:4543–4550

    PubMed  CAS  Google Scholar 

  • Erxleben C., Everhart A.L., Romeo C., Florence H., Bauer M.B., Alcorta DA., Rossie S., Shipston M.J., Armstrong D.L. 2002. Interacting effects of N-terminal variation and strex exon splicing on slo potassium channel regulation by calcium, phosphorylation. and oxidation. J. Biol. Chem. 277: 27045–27052

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Fernández J.M., Tomás M., Vázquez E., Orio P., Lalorre R., Senti M., Marrugsit J., Valverde M.A. 2004. Gain-of-function mutation in the KCNMB1 potassium channel subunit is associated with low prevalence of diastolic hypertension. Clin. Invest. 113:1032–1039

    Article  PubMed  CAS  Google Scholar 

  • Gribkoff V.K., Starret Jr. J.E., Dworetzky S.I. 1997. The pharmacology and molecular biology of large-conductance calcium-activated (BK) potassium channels. Adv. Pharmacol. 37:319–348

    Article  PubMed  CAS  Google Scholar 

  • Gutiérrez A.A., Arias J.M., Garcia L., Mas-Oliva J., Guerrero-Hernandéz A. 1999. Activation of a Ca2+-permeable cation channel by two different inducers of apoptosis in a human prostatic cancer cell line. J. Physiol. 517:95–107

    Article  PubMed  Google Scholar 

  • Horoszewicz J.S., Leong S.S, Kawinski E., Karr J.P., Rosenthal H., Chu T.M., Mirand E.A., Murphy G.P. 1963. LNCaP model of human prostatic carcinoma. Cancer Res 43:1908–1916

    Google Scholar 

  • Horrigan F.T., Cur J., Aldnch R.W. 1999. Allosteric voltage gating of potassium channels I: mSlo ionic currents in the absence of Ca2+. J. Gen. Physiol. 114:277–304

    Article  PubMed  CAS  Google Scholar 

  • Jin P., Weiger T.M., Wu Y., Levitan I.B. 2002. Phosphorylation-dependent functional coupling of hSlo calcium-dependent potassium channel and its hβ4 subunit. J. Biol Chem. 277:10014–10020

    Article  PubMed  CAS  Google Scholar 

  • Kaczorowski G.J., Knaus H.-G., Leonard R.J., McManus O.B., Garcia M.L. 1996. High-conductance calcium-activated potassium channels: structure, pharmacolcgy, and function. J Bioenerg. Biomembr. 28:255–267

    Article  PubMed  CAS  Google Scholar 

  • Knaus H.-G., McManus O.B., Lee S.H., Schmalhofer W.A., Garcia-Calvo M., Helms L.M.H., Sanchez M., Giangiacomo K., Reuben J.P., Smith A.B., 3rd, Kaczorowski G.J., Garcia M.L. 1994. Tremorgenic indole alkaloids potently inhibit smooth muscle high-conductance calcium-activated potassium channels. Biochemistry 33:5819–5828

    Article  PubMed  CAS  Google Scholar 

  • Kraft R., Benndorf K., Patt S. 2000. Large conductance Ca2+ activated K+ channels in human meningioma cells. J. Membrane. Biol. 175:25–33

    Article  CAS  Google Scholar 

  • Lai G.-J., McCobb D.P. 2002. Opposing actions of adrenal androgens and glucocorticoids on alternative splicing of Slo potassium channels in bovine chromaffin cells. Proc. Natl. Acact. Set. USA 99:7722–7727

    Article  PubMed  CAS  Google Scholar 

  • Lippiat J.D., Standen N.B., Davies. N.W. 2000. A residue in the intracellular vestibule of the pore is critical for gating and permeation in Ca2+-activated K+ (BKCa) channels. J Physiot. 529:131–138

    Article  PubMed  CAS  Google Scholar 

  • Lippiat J.D., Standen N.B., Harrow I.D., Phillips S.C., Davies N.W. 2003. Properties of BKCa channels formed by bicistronic expression of hSlo α and β1-4 subunits in HEK293 cells. J. Membrane. Biol. 192:141–148

    Article  CAS  Google Scholar 

  • Liu X., Chang Y., Reinhart P.M., Sontheimer H. 2002. Cloning and characterization of glioma BK, a novel BK channel isoform highly expressed in human glioma cells. J. Neurosci. 22:1640–1849

    PubMed  CAS  Google Scholar 

  • Marrion M.V., Tavalin S.J. 1998. Selective activation of Ca2+-activated K+ channels by co-localized Ca2+ channels in hippocampal neurons. Nature 395:900–905

    Article  PubMed  CAS  Google Scholar 

  • Meera P., Wallner M., Toro L. 2000. A neuronal β subunit (hKCNMB4) makes the large conductance, voltage- and Ca2+-activated K+ channel resistant to charybdotoxin and iberiotion. Proc. Natl. Acad. Sci. USA. 97:5562–5567

    Article  PubMed  CAS  Google Scholar 

  • Meera P., Wallner M., Jiang Z., Toro L. 1996. A calcium switch for the functional coupling between (hslo) and β subunits (KV,Caβ) of maxi K channels. FEBS Lett. 382:84–38

    Article  PubMed  CAS  Google Scholar 

  • Meera P., Wallner M., Song M., Toro L. 1997. Large conductance voltage- and calcium-dependent K+ channel, a distinct member of voltage-dependention channels with seven N-terrninal transmembrane segments (S0-S6), an extracellular N terminus, and an intracellular (S9-S10) C terminus. Proc. Natl Acad. Set. USA 94:14066–14071

    Article  PubMed  CAS  Google Scholar 

  • Orio P., Rojas P., Ferreira G., Latorre R. 2002. New disguises for an old channel. MaxiK channel β-subunits. News Physiol. Sci. 17:156–161

    PubMed  CAS  Google Scholar 

  • Ramanathan K., Michael T.H., Jiang G.-J., Hiel H., Fuchs P.A. 1999. A molecular mechanism for electrical tuning of cochleae hair cells. Science 283:215–217

    Article  PubMed  CAS  Google Scholar 

  • Sansom S.C., Stockand J.D. 1994. Differential Ca2+ sensitivities of BK(Ca) isochannels in bovine mesenteric vascular smooth muscle. Am. J. Physiol. 266:1182–1189

    Google Scholar 

  • Santarelli L.C., Chen J., Hsinernann S.H., Hoshi T. 2004. The β1 subunit enhances oxidative regulation of large-conductance calcium -activated K+ channels J. Gen. Physiol. 124:357–370

    Article  PubMed  CAS  Google Scholar 

  • Santarelli, L.C., Wassef, R., Heinemann, S.H., Hoshi, I. 2006. Three methionine residues located within the regulator of conductance for K+ (RCK) domains confer oxidative sensitivity to large-conductance Ca2+- activated K+ channels. J. Physiol. 571:329–359

    Article  PubMed  CAS  Google Scholar 

  • Schubert R., Nelson M.T. 2001. Protein kinases: tuners of the BKCa channel in smooth musde. Trends Pharmacol. 22:505–512

    Article  PubMed  CAS  Google Scholar 

  • Shao L.-R., Halvorsrud R., Borg-Graham L., Storm J.F. 1999. The role of BK-type Ca2+-dependent K+ channels in spike broadening during repetitive firing in rat hippocampal pyramidal cells. J. Physiol. 521:135–146

    Article  PubMed  CAS  Google Scholar 

  • Shen K.-Z., Lagrutta A., Davies N., Standen N., Adeiman J., North R. 1994. Tetraethylammonium block of Slowpoke calcium -activated potassium channels expressed in Xenopus oocytes: evidence for tetrameric channel formation. Pfluegures Arch. 426:440–445

    Article  CAS  Google Scholar 

  • Shi J., Cui J. 2001. Intracellular Mg2+ enhances the function of BK-type Ca2+-activated K+ channels. J. Gen. Physiol. 113:589–605

    Article  PubMed  CAS  Google Scholar 

  • Skryrna R., van Coppenolle P., Dufy-Barbe L., Dufy B., Prevarskaya N. 1999. Characterization of Ca2+-inhibited potassium channels in the LNCaP human prostate cancer cell line. Receptors Channels 6:241–253

    PubMed  CAS  Google Scholar 

  • Strøbaeck D., Christopherson P., Holm N.R., Moldt P., Ahring P.K. Johgnsen T.E., Olesen S.-P. 1996. Modulation of the Ca2+-dependenl K+ channel hslo, by the substituted diphenylurea MS 1608, paxilline and internal Ca2+. Neuropharmacology 35:903–914

    Article  PubMed  Google Scholar 

  • Thalmann. G.N., Anezinis P.E., Chang S.M., Zhau H.E., Kirn E.E., Hopwood V.L., Pathak S., von Eschenbach A.C., Chung L.W. 1994. Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res. 54:2577–2531

    PubMed  CAS  Google Scholar 

  • Thurm H., Fakler B., Oliver D. 2005 Ca2+-independent activation of BKCa channels at negative potentials in mammalian inner hair cells J. Physiol 569:137–151

    Article  CAS  Google Scholar 

  • Tseng-Crank J., Foster C.D., Krause J.D., Mertz R., Godinot N., DiChiara T.J., Reinhart P.H. 1994. Cloning, expression, and distribution of functionally distinct Ca2+-activated K+ channel isoforms from: human brain. Neuron 13:1315–1330

    Article  PubMed  CAS  Google Scholar 

  • Wang Y.-W., Ding J.P., Xia X.-M., Lingie C.J. 2002. Consecquences of the stoichiometry of Slo1 α and auxiliary β subunits on functional properties of large-conductance Ca2+-activated K+ channels. J. Neurosci. 22:1550–1561

    PubMed  CAS  Google Scholar 

  • Weiger T.M., Hermann A., Levitan I.B. 2002. Modulation of calcium-activated potassium channels. J. Comp. Physiol A. 188:79–87

    Article  CAS  Google Scholar 

  • Weaver A.K., Llu X., Sontheimer H. 2004. Role for calcium-activated potassium channels (BK) in growth control of human malignant glioma J. Neurrosci. Res. 78:224–234

    Article  PubMed  CAS  Google Scholar 

  • Xia X.-M., Zeng X., Lingle. C.J. 2002. Multiple regulatory sites in large-conductance calcium-activated potassium channels. Nature 418:880–884

    Article  PubMed  CAS  Google Scholar 

  • Xie J., McCobb D.P. 1998. Control of alternative splicing of potassium channels toy hormones. Science 280:443–446

    Article  PubMed  CAS  Google Scholar 

  • Zhau H.V., Chang S.M., Chen B.Q., Wang Y., Zhang H., Kao C., Sang Q.A., Pathak S.J., Chung L.W. 1996. Androgen-reprassed phenotype in human prostate cancer. Proc. Natl. Acad. Sci. USA 93:15152–15157

    Article  PubMed  CAS  Google Scholar 

  • Zhou X.-B., Arntz C., Kamm S., Motejlek K., U., Wang G.-X., Ruth P., Korth M. 2001. A molecular switch for specific simulation of the BKCa channel by cGMP and cAMP kinase. J. Biol. Chem. 276:43239–43245

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We are grateful for technical assistance by S. Arend and A. Rossner and for helpful discussions with R. Schönherr. This work was supported by the DFG (HE 2993/2), TMWFK (B378-01027) and National Institute of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.H. Heinemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gessner, G., Schönherr, K., Soom, M. et al. BK Ca Channels Activating at Resting Potential without Calcium in LNCaP Prostate Cancer Cells. J Membrane Biol 208, 229–240 (2006). https://doi.org/10.1007/s00232-005-0830-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0830-z

Keywords

Navigation