Skip to main content

Advertisement

Log in

The Role of the Tight Junction in Paracellular Fluid Transport across Corneal Endothelium. Electro-osmosis as a Driving Force

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The mechanism of epithelial fluid transport is controversial and remains unsolved. Experimental difficulties pose obstacles for work on a complex phenomenon in delicate tissues. However, the corneal endothelium is a relatively simple system to which powerful experimental tools can be applied. In recent years our laboratory has developed experimental evidence and theoretical insights that illuminate the mechanism of fluid transport across this leaky epithelium. Our evidence points to fluid being transported via the paracellular route by a mechanism requiring junctional integrity, which we attribute to electro-osmotic coupling at the junctions. Fluid movements can be produced by electrical currents. The direction of the movement can be reversed by current reversal or by changing junctional electrical charges by polylysine. Aquaporin 1 (AQP1) is the only AQP present in these cells, and its deletion in AQP1 null mice significantly affects cell osmotic permeability but not fluid transport, which militates against the presence of sizable water movements across the cell. By contrast, AQP1 null mice cells have reduced regulatory volume decrease (only 60% of control), which suggests a possible involvement of AQP1 in either the function or the expression of volume-sensitive membrane channels/transporters. A mathematical model of corneal endothelium predicts experimental results only when based on paracellular electro-osmosis, and not when transcellular local osmosis is assumed instead.

Our experimental findings in corneal endothelium have allowed us to develop a novel paradigm for this preparation that includes: (1) paracellular fluid flow; (2) a crucial role for the junctions; (3) hypotonicity of the primary secretion; (4) an AQP role in regulation and not as a significant water pathway. These elements are remarkably similar to those proposed by the Hill laboratory for leaky epithelia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  • Bai C., Fukuda N., Song Y., Ma T., Matthay M.A., Verkman A.S. 1999. Lung fluid transport in aquaporin-1 and aquaporin-4 knockout mice. J. Clin. Invest. 103:555–561

    PubMed  CAS  Google Scholar 

  • Benga G., Popescu O., Borza V., Pop V.I., Muresan A., Mocsy I., Brain A., Wrigglesworth J.M. 1986a. Water permeability in human erythrocytes: identification of membrane proteins involved in water transport. Eur. J. Cell Biol. 41:252–262

    CAS  Google Scholar 

  • Benga G., Popescu O., Pop V.I., Holmes R.P. 1986b. p-(Chloromercuri) benzenesulfonate binding by membrane proteins and the inhibition of water transport in human erythrocytes. Biochemistry (Mosc). 25:1535–1538

    Article  CAS  Google Scholar 

  • Bonanno J.A. 1994. Bicarbonate transport under nominally bicarbonate-free conditions in bovine corneal endothelium. Exp. Eye Res. 58:415–421

    Article  PubMed  CAS  Google Scholar 

  • Cowan C.A., Yokoyama N., Bianchi L.M., Henkemeyer M., Fritzsch B. 2000. EphB2 guides axons at the midline and is necessary for normal vestibular function. Neuron 26:417–430

    Article  PubMed  CAS  Google Scholar 

  • Denker B.M., Smith B.L., Kuhajda F.P., Agre P. 1988. Identification, purification and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J. Biol. Chem. 263:15634–15642

    PubMed  CAS  Google Scholar 

  • Diamond J.M., Bossert W.H. 1967. Standing-gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J. Gen. Physiol. 50:2061–2083

    Article  PubMed  CAS  Google Scholar 

  • Diecke F.P., Wen Q., Kong J., Kuang K., Fischbarg J. 2004. Immunocytochemical localization of Na+-HCO3- cotransporters in fresh and cultured bovine corneal endothelial cells. Am. J. Physiol. 286:C1434–C1442

    Article  CAS  Google Scholar 

  • Dikstein S., Maurice D.M. 1972. The metabolic basis of the fluid pump in the cornea. J. Physiol. 221:29–41

    PubMed  CAS  Google Scholar 

  • Doughty M.J., Maurice D.M. 1988. Bicarbonate sensitivity of rabbit corneal endothelium fluid pump in vitro. Invest. Ophthalmol. Vis. Sci. 29:216–223

    PubMed  CAS  Google Scholar 

  • Fischbarg J. 1995. A rapidly emerging field: water channel proteins in the eye. Invest. Ophthalmol. Vis. Sci. 36:758–763

    PubMed  CAS  Google Scholar 

  • Fischbarg J. 1997. Mechanism of fluid transport across corneal endothelium and other epithelial layers: a possible explanation based on cyclic cell volume regulatory changes. Br. J. Ophthalmol. 81:85–89

    PubMed  CAS  Google Scholar 

  • Fischbarg J. 2003. On the mechanism of fluid transport across corneal endothelium and epithelia in general. J. Exp. Zool. A 300:30–40

    Article  CAS  Google Scholar 

  • Fischbarg J., Diecke F.P. 2005. A mathematical model of electrolyte and fluid transport across corneal endothelium. J. Membrane Biol. 203:41–56

    Article  CAS  Google Scholar 

  • Fischbarg J., Liebovitch L.S., Koniarek J.P. 1985. A central role for cell osmolarity in isotonic fluid transport across epithelia. Biol. Cell. 55:239–244

    PubMed  CAS  Google Scholar 

  • Fischbarg J., Lim J.J. 1974. Role of cations, anions and carbonic anhydrase in fluid transport across rabbit corneal endothelium. J. Physiol. 241:647–675

    PubMed  CAS  Google Scholar 

  • Fischbarg J., Lim J.J., Bourguet J. 1977. Adenosine stimulation of fluid transport across rabbit corneal endothelium. J. Membrane Biol. 35:95–112

    Article  CAS  Google Scholar 

  • Fischbarg, J., Rubashkin, A., Iserovich, P. 2004. Electro-osmotic coupling in leaky tight junctions is theoretically possible. Experimental Biology 2004. pp. A710 (Abstract #463.6). FASEB, Washington, D.C

  • Fromter E., Diamond J.M. 1972. Route of passive ion permeation in epithelia. Nature New Biology 235:9–13

    Article  PubMed  CAS  Google Scholar 

  • Hamann S., Zeuthen T., La Cour M., Nagelhus E.A., Ottersen O.P., Agre P., Nielsen S. 1998. Aquaporins in complex tissues: distribution of aquaporins 1–5 in human and rat eye. Am. J. Physiol. 274:C1332–C1345

    PubMed  CAS  Google Scholar 

  • Hartmann T., Verkman A.S. 1990. Model of ion transport regulation in chloride-secreting airway epithelial cells. Integrated description of electrical, chemical, and fluorescence measurements. Biophys. J. 58:391–401

    PubMed  CAS  Google Scholar 

  • Hemlin M. 1995. Fluid flow across the jejunal epithelia in vivo elicited by d-c current: effects of mesenteric nerve stimulation. Acta Physiol. Scand. 155:77–85

    PubMed  CAS  Google Scholar 

  • Hill A.E. 1975a. Solute-solvent coupling in epithelia: a critical examination of the standing-gradient osmotic flow theory. Proc. R. Soc. Lond. B 190:99–114

    CAS  Google Scholar 

  • Hill A.E. 1975b. Solute-solvent coupling in epithelia: an electro-osmotic theory of fluid transfer. Proc. R. Soc. London B 190:115–134

    CAS  Google Scholar 

  • Hill A.E., Shachar-Hill B., Shachar-Hill Y. 2004. What are aquaporins for? J. Membrane Biol. 197:1–32

    Article  CAS  Google Scholar 

  • Hodson S., Miller F. 1976. The bicarbonate ion pump in the endothelium which regulates the hydration of the rabbit cornea. J. Physiol. 263:563–577

    PubMed  CAS  Google Scholar 

  • Hogben C.A.M. 1960. Movement of material across cell membranes. The Physiologist 3(4):56–62

    Google Scholar 

  • Katchalsky A., Curran P.F. 1965. Nonequilibrium Thermodynamics in Biophysics. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Kovbasnjuk O., Leader J.P., Weinstein A.M., Spring K.R. 1998. Water does not flow across the tight junctions of MDCK cell epithelium. Proc. Natl. Acad. Sci. USA 26:6526–6530

    Article  Google Scholar 

  • Kuang K., Cragoe E.J., Fischbarg J. 1993. Fluid transport and electroosmosis across corneal endothelium. In: H.H. Ussing, J. Fischbarg, E. Sten Knudsen, E. Hviid Larsen, N.J. Willumsen, editors, Proc. Alfred Benzon Symposium 34, “Water transport in leaky epithelia”. Munksgaard, Copenhagen pp. 69–79

  • Kuang K., Xu M., Koniarek J.P., Fischbarg J. 1990. Effects of ambient bicarbonate, phosphate and carbonic anhydrase inhibitors on fluid transport across rabbit corneal endothelium. Exp. Eye Res. 50:487–493

    Article  PubMed  CAS  Google Scholar 

  • Kuang K., Yiming M., Wen Q., Li Y., Ma L., Iserovich P., Verkman A.S., Fischbarg J. 2004. Fluid transport across cultured layers of corneal endothelium from Aquaporin-1 null mice. Exp. Eye Res. 78:791–798

    Article  PubMed  CAS  Google Scholar 

  • Latta R., Clausen C., Moore L.C. 1984. General method for the derivation and numerical solution of epithelial transport models. J. Membrane Biol. 82:67–82

    Article  CAS  Google Scholar 

  • Lew V.L., Ferreira H.G., Moura T. 1979. The behaviour of transporting epithelial cells. I. Computer analysis of a basic model. Proc. R. Soc. Lond. B. 206:53–83

    Article  PubMed  CAS  Google Scholar 

  • Liebovitch L.S., Weinbaum S. 1981. A model of epithelial water transport. The corneal endothelium. Biophys. J. 35:315–338

    PubMed  CAS  Google Scholar 

  • Lim J.J., Liebovitch L.S., Fischbarg J. 1983. Ionic selectivity of the paracellular shunt path across rabbit corneal endothelium. J. Membrane Biol. 73:95–102

    Article  CAS  Google Scholar 

  • Lyslo A., Kvernes S., Garlid K., Ratkje S.K. 1985. Ionic transport across corneal endothelium. Acta Ophthalmol. (Copenh). 63:116–125

    Article  CAS  Google Scholar 

  • Ma T., Fukuda N., Song Y., Matthay M.A., Verkman A.S. 2000. Lung fluid transport in aquaporin-5 knockout mice [see comments]. J. Clin. Invest. 105:93–100

    PubMed  CAS  Google Scholar 

  • Ma T., Song Y., Gillespie A., Carlson E.J., Epstein C.J., Verkman A.S. 1999. Defective secretion of saliva in transgenic mice lacking aquaporin-5 water channels. J. Biol. Chem. 274:20071–20074

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin S., Mathias R.T. 1985. Electro-osmosis and the reabsorption of fluid in renal proximal tubules. J. Gen. Physiol. 85:699–728

    Article  PubMed  CAS  Google Scholar 

  • Moore M., Ma T., Yang B., Verkman A.S. 2000. Tear secretion by lacrimal glands in transgenic mice lacking water channels AQP1, AQP3, AQP4 and AQP5. Exp. Eye Res. 70:557–562

    Article  PubMed  CAS  Google Scholar 

  • Naftalin R.J., Tripathi S. 1985. Passive water flows driven across the isolated rabbit ileum by osmotic, hydrostatic and electrical gradients. J. Physiol. 360:27–50

    PubMed  CAS  Google Scholar 

  • Narula P.M., Xu M., Kuang K., Akiyama R., Fischbarg J. 1992. Fluid transport across cultured bovine corneal endothelial cell monolayers. Am. J. Physiol. 262:C98–C103

    PubMed  CAS  Google Scholar 

  • Nielsen R. 1990. Isotonic secretion via frog skin glands in vitro. Water secretion is coupled to the secretion of sodium ions. Acta Physiol. Scand. 139:211–221

    PubMed  CAS  Google Scholar 

  • Nielsen S., Smith B.L., Christensen E.I., Agre P. 1993a. Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc. Natl. Acad. Sci. USA 90:7275–7279

    Article  CAS  Google Scholar 

  • Nielsen S., Smith B.L., Christensen E.I., Knepper M.A., Agre P. 1993b. CHIP28 water channels are localized in constitutively water-permeable segments of the nephron. J. Cell Biol. 120:371–383

    Article  CAS  Google Scholar 

  • Novotny J.A., Jakobsson E. 1996. Computational studies of ion-water flux coupling in the airway epithelium. I. Construction of model. Am. J. Physiol. 270:C1751–C1763

    PubMed  CAS  Google Scholar 

  • Ogilvie J.T., McIntosh J.R., Curran P.F. 1963. Volume flow in a series-membrane system. Biochim. Biophys. Acta 66:441–444

    PubMed  CAS  Google Scholar 

  • Oshio K., Watanabe H., Song Y., Verkman A.S., Manley G.T. 2005. Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin-1. FASEB J. 19:76–78

    PubMed  CAS  Google Scholar 

  • Patil R.V., Han Z., Yiming M., Yang J., Iserovich P., Wax M.B., Fischbarg J. 2001. Fluid transport by human nonpigmented ciliary epithelial layers in culture: a homeostatic role for aquaporin-1. Am. J. Physiol. 281:C1139–C1145

    CAS  Google Scholar 

  • Preston G.M., Agre P. 1991. Isolation of the cDNA for erythrocyte membrane protein of 28 kilodaltons: member of an ancient channel familiy. Proc. Natl. Acad. Sci. USA 88:11110–11114

    Article  PubMed  CAS  Google Scholar 

  • Preston G.M., Carroll W.B., Guggino W.B., Agre P. 1992. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387

    PubMed  CAS  Google Scholar 

  • Preston G.M., Smith B.L., Zeidel M.L., Moulds J.J., Agre P. 1994. Mutations in aquaporin-1 in phenotypically normal humans without functional CHIP water channels. Science 265:1585–1587

    PubMed  CAS  Google Scholar 

  • Reuss L. 2000. General principles of water transport. In: D.W. Seldin, G. Giebisch, editors, The Kidney, Physiology and Pathophysiology (chapter 13). Raven Press, New York pp. 321–340

    Google Scholar 

  • Reuss, L. 2006. Mechanisms of water transport across cell embranes and epithelia. In: The Kidney, Physiology and Pathophysiology. R.J. Alpern and S.C. Hebert, editors. Elsevier, Amsterdam

  • Rubashkin, A., Iserovich, P., Hernandez, J., Fischbarg, J. 2005. Epithelial fluid transport: protruding macromolecules and space charges can bring about electro-osmotic coupling at the tight junctions. J. Membrane Biol. 208:251–263.

    Article  CAS  Google Scholar 

  • Sanchez J.M., Li Y., Rubashkin A., Iserovich P., Wen Q., Ruberti J.W., Smith R.W., Rittenband D., Kuang K., Diecke F.P.J., Fischbarg J. 2002. Evidence for a Central Role for Electro-Osmosis in Fluid Transport by Corneal Endothelium. J. Membrane Biol. 187:37–50

    Article  CAS  Google Scholar 

  • Schnermann J., Chou C.L., Ma T., Traynor T., Knepper M.A., Verkman A.S. 1998. Defective proximal tubular fluid reabsorption in transgenic aquaporin-1 null mice. Proc. Natl. Acad. Sci. USA 95:9660–9664

    Article  PubMed  CAS  Google Scholar 

  • Shachar-Hill B., Hill A.E. 2002. Paracellular fluid transport by epithelia. Int. Rev. Cytol. 215:319–350

    Article  PubMed  CAS  Google Scholar 

  • Song Y., Sonawane N., Verkman A.S. 2002. Localization of aquaporin-5 in sweat glands and functional analysis using knockout mice. J. Physiol. 541:561–568

    Article  PubMed  CAS  Google Scholar 

  • Spring K.R. 1998. Routes and mechanism of fluid transport by epithelia. Annu. Rev. Physiol. 60:105–119

    Article  PubMed  CAS  Google Scholar 

  • Spring K.R., Paganelli C.V. 1972. Sodium flux in Necturus proximal tubule under voltage clamp. J. Gen. Physiol. 60:181–201

    PubMed  CAS  Google Scholar 

  • Stamer W.D., Peppel K., O’Donnell M.E., Roberts B.C., Wu F., Epstein D.L. 2001. Expression of aquaporin-1 in human trabecular meshwork cells: role in resting cell volume. Invest. Ophthalmol. Vis. Sci. 42:1803–1811

    PubMed  CAS  Google Scholar 

  • Timbs M.M., Spring K.R. 1996. Hydraulic properties of MDCK cell epithelium. J. Membrane Biol. 153:1–11

    Article  CAS  Google Scholar 

  • Tripathi S., Boulpaep E.L. 1988. Cell membrane water permeabilities and streaming currents in Ambystoma proximal tubule. Am. J. Physiol. 255:F188–F203

    PubMed  CAS  Google Scholar 

  • Ussing H.H., Eskesen K. 1989. Mechanism of isotonic water transport in glands. Acta Physiol. Scand. 136:443–454

    Article  PubMed  CAS  Google Scholar 

  • Van Itallie C.M., Anderson J.M. 2004. The molecular physiology of tight junction pores. Physiology 19:331–338

    Article  PubMed  Google Scholar 

  • Van Os C.H., Michels J.A., Slegers J.F. 1976. Effects of electrical gradients on volume flow across gall bladder epithelium. Biochim. Biophys. Acta 443:545–555

    Article  PubMed  CAS  Google Scholar 

  • Verkman A.S. 2000. Physiological importance of aquaporins: lessons from knockout mice. Curr. Opin. Nephrol. Hypertens. 9:517–522

    Article  PubMed  CAS  Google Scholar 

  • Verkman A.S., Alpern R.J. 1987. Kinetic transport model for cellular regulation of pH and solute concentration in the renal proximal tubule. Biophys. J. 51:533–546

    PubMed  CAS  Google Scholar 

  • Verkman A.S., Yang B., Song Y., Manley G.T., Ma T. 2000. Role of water channels in fluid transport studied by phenotype analysis of aquaporin knockout mice. Exp. Physiol. 85 Spec No:233S–241S

  • Wedner H.J., Diamond J.M. 1969. Contributions of unstirred-layer effects to apparent electrokinetic phenomena in the gallbladder. J. Membrane Biol. 1:92–108

    Article  CAS  Google Scholar 

  • Weinstein A.M., Windhager E.E. 2001. The paracellular shunt of proximal tubule. J. Membrane Biol. 184:241–245

    Article  CAS  Google Scholar 

  • Wen Q., Diecke F.P., Iserovich P., Kuang K., Sparrow J., Fischbarg J. 2001. Immunocytochemical localization of aquaporin-1 in bovine corneal endothelial cells and keratocytes. Exp. Biol. Med. (Maywood) 226:463–467

    CAS  Google Scholar 

  • Whittembury G., Reuss L. 1992. Mechanisms of coupling of solute and solvent transport in epithelia. In: D.W. Seldin, G. Giebisch, editors, The Kidney: Physiology and Pathophysiology. Raven Press, New York pp. 317–360

    Google Scholar 

Download references

Acknowledgement

This work was supported by NIH Grant EY06178, and by Research to prevent Blindness, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Fischbarg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischbarg, J., Diecke, F., Iserovich, P. et al. The Role of the Tight Junction in Paracellular Fluid Transport across Corneal Endothelium. Electro-osmosis as a Driving Force. J Membrane Biol 210, 117–130 (2006). https://doi.org/10.1007/s00232-005-0850-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0850-8

Keywords

Navigation