Skip to main content
Log in

The Physiology and Evolution of Urea Transport in Fishes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

This review summarizes what is currently known about urea transporters in fishes in the context of their physiology and evolution within the vertebrates. The existence of urea transporters has been investigated in red blood cells and hepatocytes of fish as well as in renal and branchial cells. Little is known about urea transport in red blood cells and hepatocytes, in fact, urea transporters are not believed to be present in the erythrocytes of elasmobranchs nor in teleost fish. What little physiological evidence there is for urea transport across fish hepatocytes is not supported by molecular evidence and could be explained by other transporters. In contrast, early findings on elasmobranch renal urea transporters were the impetus for research in other organisms. Urea transport in both the elasmobranch kidney and gill functions to retain urea within the animal against a massive concentration gradient with the environment. Information on branchial and renal urea transporters in teleost fish is recent in comparison but in teleosts urea transporters appear to function for excretion and not retention as in elasmobranchs. The presence of urea transporters in fish that produce a copious amount of urea, such as elasmobranchs and ureotelic teleosts, is reasonable. However, the existence of urea transporters in ammoniotelic fish is curious and could likely be due to their ability to manufacture urea early in life as a means to avoid ammonia toxicity. It is believed that the facilitated diffusion urea transporter (UT) gene family has undergone major evolutionary changes, likely in association with the role of urea transport in the evolution of terrestriality in the vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Alsop D.H., Kieffer J.D., Wood C.M. 1999. The effects of temperature and swimming speed on instantaneous fuel use and nitrogenous waste excretion of the Nile tilapia. Physiol. Biochem. Zool. 72:474–483

    PubMed  CAS  Google Scholar 

  • Alsop D.H., Wood C.M. 1997. The interactive effects of feeding and exercise on oxygen consumption, swimming performance and protein usage in juvenile rainbow trout (Oncorhynchus mykiss). J. Exp. Biol. 200:2337–2346

    PubMed  Google Scholar 

  • Anderson P.M. 2001. Uera and glutamine synthesis: environmental influences on nitrogen excretion. In: P.A. Wright P.M. Anderson, eds Nitrogen Excretion. Academic Press, San Diego pp. 239–278

    Google Scholar 

  • Anderson P.M., Walsh P.J. 1995. Subcellular localization and biochemical properties of the enzymes of carbamoyl phophate and urea synthesis in the batrachoidid fishes Opsanus beta, Opsanus tau and Porichthys notatus. J. Exp. Biol. 198:755–766

    CAS  Google Scholar 

  • Beamish F.W.H., Thomas E. 1984. Effects of dietary protein and lipid on nitrogen losses in rainbow trout (Salmo gairdneri). Aquaculture. 41:359–371

    Google Scholar 

  • Bishop S.H., Campbell J.W. 1965. Arginine and urea biosynthesis in the earthworm Lumbricus terrestris. Comp. Biochem. Physiol. 15:51–71

    PubMed  CAS  Google Scholar 

  • Boylan J. 1967. Gill permeability in Squalus acanthias. In: P.W. Gilbert R.F. Mathewson D.P. Rall, editor. Sharks, skates and rays. Johns Hopkins University Press, Baltimore pp. 197–206

    Google Scholar 

  • Boylan J.W. 1972. A model for passive urea reabsorption in the elasmobranch kidney. Comp. Biochem. Physiol. 42A:27–30

    Google Scholar 

  • Bucking C., Wood C.M. 2004. Does urea reabsorption occur via the glucose pathway in the kidney of the freshwater rainbow trout? Fish Physiol. Biochem. 30:1–12

    CAS  Google Scholar 

  • Carby J.M.N., Gorelich-Feldman D.A., Kozono D., Praetorius J., Nielsen S., Agre P. 2003. Aquaglyceroporin AQP9: solute permeation and metabolic control of expression in liver. Proc. Nat. Acad. Sci. 100:2945–2950

    Google Scholar 

  • Carlson S.R., Goldstein L. 1997. Urea transport across the cell membrane of skate erythrocytes. J. Exp. Zool. 277:275–282

    CAS  Google Scholar 

  • Carrasco G.A., Van De Kar L.D. 2003. Neuroendocrine pharmacology of stress. European J. Pharmacol. 463:235–272

    CAS  Google Scholar 

  • Chadwick T.D., Wright P.A. 1999. Nitrogen excretion and expression of urea cycle enzymes in the Atlantic cod (Gadus morhus L.): a comparison of early life stages with adults. J. Exp. Biol. 202:2653–2662

    PubMed  CAS  Google Scholar 

  • Chan D.K.O., Wong T.M. 1977. Physiological adjustements to dilution of the external medium in the lip-shark Hamiscyllium plagiosum (Bennett). I. Size of body compartments and osmolute composition. J. Exp. Zool. 200:71–84

    CAS  Google Scholar 

  • Chaouloff F. 1993. Physiolpharmacological interactions between stress hormones and central serotonergic systems. Brain Research Reviews. 18:1–32

    PubMed  CAS  Google Scholar 

  • Chou C.L., Knepper M.A. 1989. Inhibition of urea transport in inner medullary collecting duct by phloretin and urea analogues. Am. J. Physiol. 257:F359–F365

    PubMed  CAS  Google Scholar 

  • Coe M.J. 1966. The biology of Tilapia grahami Boulenger in Lake Magadi, Kenya. Acta. Trop. 23:146–177

    Google Scholar 

  • Cohen S., Lewis H.B. 1949. The nitrogenous metabolism of the earthworm (Lumbricus terrestris). J. Biol. Chem. 180:79–91

    CAS  PubMed  Google Scholar 

  • Cooper R.A., Morris S. 1998. Osmotic and haemotological response of the Port Jackson shark, Heterodontus portusjacksoni and the common stingaree Trygonoptera testacea upon exposure to diluted sea water. Mar. Biol. 132:29–42

    CAS  Google Scholar 

  • de Vlaming V.L., Sage M. 1973. Osmoregulation in the euryhaline elasmobranch, Dasyatis sabina. Comp. Biochem. Physiol. 45A:31–44

    Google Scholar 

  • Denis W. 1913. Metabolism studies on cold-blooded animals. II The blood and urine of fish. J. Biol. Chem. 16:389–393

    Google Scholar 

  • Dépêche J., Gilles R., Daufresne S., Chiapello H. 1979. Urea content and urea production via the ornithine-urea cycle pathway during the ontogenic development of two teleost fishes. Comp. Biochem. Physiol. 63A:51–56

    Google Scholar 

  • Fenton R., Hewitt J.E., Howorth A., Cottingham C.A., Smith C.P. 1999. The murine urea transporter genes S1c14a1 and S1c14a2 occur in tandem on chromosome 18. Cytogen. Cellular. Genet. 87:95–96

    CAS  Google Scholar 

  • Fines G.A., Ballantyne J.S., Wright P.A. 2001. Active urea transport and an unusual basolateral membrane composition in the gills of a marine elasmobranch. Am. J. Physiol. 280:R16–R24

    CAS  Google Scholar 

  • Forster R.P., Goldstein L. 1976. Intracellular osmoregulatory role of amino acids and urea in marine elasmobranchs. Am. J. Physiol. 230:925–931

    PubMed  CAS  Google Scholar 

  • Friedman P.A., Hebert S.C. 1990. Diluting segment in kidney of dogfish shark. I. Localization and characterization of chloride absorption. Am. J. Physiol. 258:R398–R408

    PubMed  CAS  Google Scholar 

  • Galluci E., Micell S., Lippe C. 1971. Non-electrolyte permeability across thin lipid membranes. Arch. Int. Physiol. Biochim. 79:881–887

    Google Scholar 

  • Goldstein L., Forster R.P. 1971a. Osmoregulation and urea metabolism in the little skate Raja erinacea. Am. J. Physiol. 220:742–746

    CAS  Google Scholar 

  • Goldstein L., Forster R.P. 1971b. Urea biosynthesis and excretion in freshwater and marine elasmobranchs. Comp. Biochem. Physiol. 39B:415–421

    Google Scholar 

  • Griffith R.W. 1991. Guppies, toadfish, lungfish, coelacanths and frogs - a scenario for the evolution of urea retention in fishes. Environ. Biol. Fish. 32:199–218

    Google Scholar 

  • Hays R.M., Levine S.D., Myers J.D., Heinemann H.O., Kaplan M.A., Franki N., Berliner H. 1977. Urea transport in the dogfish kidney. J. Exp. Zool. 199:309–316

    PubMed  CAS  Google Scholar 

  • Hickman C.P., Trump B.F. 1969. The kidney. In: W.S. Hoar D.J. Randall, editors.Fish Physiology. Academic Press, New York pp. 91–239

    Google Scholar 

  • Höglund E., Balm P.H.M., Winberg S. 2002. Stimulatory and inhibitory effects of 5-HT1A receptors on adrenocorticotropic hormone and cortisol secretion in an teleost fish, the Arctic charr (Salvelinus alpinus). Neurosci. Let. 324:193–196

    Google Scholar 

  • Hopkins T.E., Wood C.M., Walsh P.J. 1995. Interactions of cortisol and nitrogen metabolism in the ureogenic gulf toadfish Opsanus beta. J. Exp. Biol. 198:2229–2235

    PubMed  CAS  Google Scholar 

  • Hyodo S., Katoh F., Kaneko T., Takei Y. 2004. A facilitative urea transporter is localized in the renal collecting tubule of the dogfish Triakis scyllia. J. Exp. Biol. 207:347–356

    PubMed  CAS  Google Scholar 

  • Isozaki T., Gillin A.G., Swanson C.E., Sands J.M. 1994a. Protein restriction sequentially induces new urea transport processes in rat initial IMCD. Am. J. Physiol. 266:F756–F761

    CAS  Google Scholar 

  • Isozaki T., Lea J.P., Tumlin J.A., Sands J.M. 1994b. Sodium-dependent net urea transport in rat initial inner medullary collecting ducts. J. Clin. Invest. 94:1513–1517

    Article  CAS  Google Scholar 

  • Isozaki T., Verlander J.W., Sands J.M. 1993. Low protein diet alters urea transport and cell structure in rat initial inner medullary collecting duct. J. Clin. Invest. 92:2448–2457

    PubMed  CAS  Google Scholar 

  • Jenkinson C.P., Grody W.W., Cederbaum S.D. 1996. Comparative properties of arginases. Comp. Biochem. Physiol. 114B:107–132

    CAS  Google Scholar 

  • Kajimura, M., Walsh, P.J., Mommsen, T.P., Wood, C.M. 2006. The dogfish shark (Squalus acanthias) increases both hepatic and extrahepatic ornithine urea cycle enzyme activities for nitrogen conservation after feeding. Physiol. Biochem. Zool. 79: 603–613

    Google Scholar 

  • Kato A., Sands J.M. 1998. Evidence for sodium-dependent active urea secretion in the deepest subsegment of the rat inner medullary collecting duct. J. Clin. Invest. 101:423–428

    PubMed  CAS  Google Scholar 

  • Kempton R.T. 1953. Studies of the elasmobranch kidney II. Reabsorption of urea by the smooth muscle of dogfish, Mustelis canis. Biol. Bull. 104:45–56

    CAS  Google Scholar 

  • Klein J.D., Timmer R.T., Rouillard P., Bailey J.L., Sands J.M. 1999. UT-A urea transporter protein expressed in liver: upregulation by uremia. J. Am. Soc. Nephrol. 10:2076–2083

    PubMed  CAS  Google Scholar 

  • Knepper M.A., Danielson R.A., Saidel G.M., Johnston K.H. 1975. Effects of dietary protein restriction and glucocorticoid administration on urea excretion in rats. Kidney Int. 8:303–315

    PubMed  CAS  Google Scholar 

  • Korsgaard B. 1994. Nitrogen distribution and excretion during embryonic postyolk sac development in Zoarces viviparus. J. Comp. Physiol. 164B:42–46

    Google Scholar 

  • Lacy E.R., Reale E., Schlusselberg D.S., Smith W.K., Woodward D.J. 1985. A renal countercurrent system in marine elasmobranch fish: a computer aided reconstruction. Science 227:1351–1354

    PubMed  CAS  Google Scholar 

  • Lauff R.F., Wood C.M. 1996. Respiratory gas exchange, nitrogenous waste excretion, and fuel usage during aerobic swimming in juvenile rainbow trout. J. Comp. Physiol. 166B:501–509

    Google Scholar 

  • Laurent P., Wood C.M., Wang Y., Perry S.F., Gilmour K.M., Part P., Chevalier C., West M., Walsh P.J. 2001. Intracellular vesicular trafficking in the gill epithelium of urea-excreting fish. Cell Tissue Res. 303:197–210

    PubMed  CAS  Google Scholar 

  • Macey R.I., Yousef L.W. 1988. Osmotic stability of red cells in renal circulation requires rapid urea transport. Am. J. Physiol. 254:C669–C674

    PubMed  CAS  Google Scholar 

  • McDonald M.D., Grosell M., Wood C.M., Walsh P.J. 2003. Branchial and renal handling of urea in the gulf toadfish, Opsanus beta: the effect of exogenous urea loading. Comp. Biochem. Physiol. 134A:763–776

    CAS  Google Scholar 

  • McDonald M.D., Walsh P.J. 2004. Dogmas and controversies in the handling of nitrogenous wastes: 5-HT2A-like receptors are involved in triggering pulsatile urea excretion in the gulf toadfish, Opsanus beta. J. Exp. Biol. 207:2003–2010

    PubMed  CAS  Google Scholar 

  • McDonald M.D., Walsh P.J., Wood C.M. 2002. Branchial and renal excretion of urea and urea analogues in the plainfin midshipman, Porichthys notatus. J. Comp. Physiol. 172B:699–712

    Google Scholar 

  • McDonald M.D., Wood C.M. 1998. Reabsorption of urea by the kidney of the freshwater rainbow trout. Fish Physiol. Biochem. 18:375–386

    CAS  Google Scholar 

  • McDonald M.D., Wood C.M. 2003. Differential handling of urea and its analogues suggests carrier-mediated urea excretion in the freshwater rainbow trout. Physiol. Biochem. Zool. 76:791–802

    PubMed  CAS  Google Scholar 

  • McDonald M.D., Wood C.M. 2004. Evidence for facilitated diffusion of urea across the gill basolateral membrane of the rainbow trout (Oncorhynchus mykiss). Biochim. Biophys. Acta. 1663:89–96

    PubMed  CAS  Google Scholar 

  • McDonald M.D., Wood C.M., Grosell M., Walsh P.J. 2004. Glucocorticoid receptors are involved in the regulation of pulsatile urea excretion in toadfish. J. Comp. Physiol. 174B:649–658

    Google Scholar 

  • McDonald M.D., Wood C.M., Wang Y., Walsh P.J. 2000. Differential branchial and renal handling of urea, acetamide and thiourea in the gulf toadfish, Opsanus beta: evidence for two transporters. J. Exp. Biol. 203:1027–1037

    PubMed  CAS  Google Scholar 

  • Minocha R., Studley K., Saier M.H. 2003. The urea transporter (UT) family: bioinformatics analuses leading to structural, functional and evolutionary predictions. Receptor Channels 9:345–352

    CAS  Google Scholar 

  • Mistry A.C., Chen G., Kato A., Nag K., Sands J.M. 2005. A novel type of urea transporter, UT-C, highly expressed in proximal tubule of seawater eel kidney. Am. J. Physiol. 288:F455–F465

    Article  CAS  Google Scholar 

  • Mistry A.C., Honda S., Hirata T., Kato A., Hirose S. 2001. Eel urea transporter is localized to chloride cells and is salinity dependent. Am. J. Physiol. Regul. 281:R1594–R1604

    CAS  Google Scholar 

  • Mommsen T.P., Vijayan M.M., Moon T.W. 1999. Cortisol in teleosts: dynamics, mechanisms of action and metabolic regulation. Rev. Fish Biol. Fisheries 9:211–268

    Google Scholar 

  • Mommsen T.P., Walsh P.J. 1989. Evolution of urea synthesis in vertebrates: the piscine connection. Science 243:72–75

    PubMed  CAS  Google Scholar 

  • Morgan R.L., Ballantyne J.S., Wright P.A. 2003a. Regulation of a renal urea transporter with reduces salinity in a mrine elasmobranch, Raja erinacea. J. Exp. Biol. 206:3285–3292

    CAS  Google Scholar 

  • Morgan R.L., Wright P.A., Ballantyne J.S. 2003b. Urea transport in kideny brush-border membrane vesicles from an elasmobranch, Raja erinacea. J. Exp. Biol. 206:3293–3302

    CAS  Google Scholar 

  • Murdaugh H.V., Robin E.D., Hearn C.D. 1964. Urea: apparent carrier-mediated transport by facilitated diffusion in dogfish erythrocytes. Science 144:52–53

    PubMed  CAS  Google Scholar 

  • Naruse M., Klein J.D., Ashkar Z.M., Jacobs J.D., Sands J.M. 1997. Glucocorticoids downregulate the vasopressin-regulated urea transporter in rat terminal inner medullary collecting ducts. J. Am. Soc. Nephrol. 8:517–523

    PubMed  CAS  Google Scholar 

  • Øverli O., Harris C.A., Winberg S. 1999. Short-term effects of fights for social dominance and the establishment of dominant-subordinate relationships on brain monoamines and cortisol in rainbow trout. Brain Behav. Evol. 54:263–275

    PubMed  Google Scholar 

  • Pärt P., Wright P.A., Wood C.M. 1998. Urea and water permeability in dogfish (Squalus acanthias) gills. Comp. Biochem. Physiol. 119A:117–123

    Google Scholar 

  • Payan P., Goldstein L., Forster R.P. 1973. Gills and kidneys in ureosmotic regulation in euryhaline skates. Am. J. Physiol. 224:367–372

    PubMed  CAS  Google Scholar 

  • Peng T., Sands J.M., Bagnasco S.M. 2002. Glucocorticoids inhibit transcription and expression of the UT-A urea transporter gene. Am. J. Physiol. 282:F853–F858

    CAS  Google Scholar 

  • Perry S.F., Gilmour K.M., Wood C.M., Part P., Laurent P., Walsh P.J. 1998. The effects of arginine vasotocin and catechlamines on nitrogen excretion and the cardio-respiratory physiology of the gulf toadfish, Opsanus beta. J. Comp. Physiol. 168B:461–472

    Google Scholar 

  • Piermarini P.M., Evans D.H. 1998. Osmoregulation of the Atlantic stingray (Dasyatis sabina) from the freshwater Lake Jesup of the St. Johns River, Florida. Physiol. Zool. 71:553–560

    PubMed  CAS  Google Scholar 

  • Pilley C.M., Wright P.A. 2000. The mechanisms of urea transport by early life stages of rainbow trout (Oncorhynchus mykiss). J. Exp. Biol. 203:3199–3207

    PubMed  CAS  Google Scholar 

  • Price K.S., Creaser E.P. 1967. Fluctuation in two osmoregulatory componenets, urea and sodium chloride, of the clearnose skate, Raja eglanteria Bosc 1802. I. Upon laboratory modification of external salinities. Comp. Biochem. Physiol. 23:77–82

    PubMed  CAS  Google Scholar 

  • Rabinowitz L., Gunther R.A. 1973. Urea transport in elasmobranch erythrocytes. Am. J. Physiol. 224:1109–1115

    PubMed  CAS  Google Scholar 

  • Randall D.J., Wood C.M., Perry S.F., Bergman H., Maloiy G.M., Mommsen T.P., Wright P.A. 1989. Urea excretion as a strategy for survival in a fish living in a very alkaline environment. Nature 337:165–166

    PubMed  CAS  Google Scholar 

  • Randall D.J., Wright P.A. 1989. The interaction between carbon dioxide and ammonia excretion and water pH in fish. Can. J. Zool. 67:2936–2942

    Article  CAS  Google Scholar 

  • Saha, N., Ratha, B.K. 1986. Effect of ammonia stress on ureogenesis in a freshwater air-breathing teleost, Heteropneustes fossilis. In: Contemporary Themes in Biochemistry. pp. 342–343. Cambridge University Press, London

  • Saha N., Ratha B.K. 1987. Active ureogenesis in a freashwater air-breathing teleost, Heteropneustes fossilis. J. Exp. Zool. 52:1–8

    Google Scholar 

  • Saha N., Ratha B.K. 1998. Ureogenesis in Indian air-breathing teleosts: adaptation to environmental constraints. Comp. Biochem. Physiol. 120A:195–208

    CAS  Google Scholar 

  • Sands J.M., Gargus J.J., Fröhlich O., Gunn R.B., Kokko J.P. 1992. Urinary concentrating ability in patients with Jk(a-b-) blood type who lack carrier-mediated urea transport. J. Am. Soc. Nephrol. 2:1689–1696

    PubMed  CAS  Google Scholar 

  • Sands J.M., Martial S., Isozaki T. 1996. Active urea transport in the rat inner medullary collecting duct: functional characterization and initial expression cloning. Kidney Int. 49:1611–1614

    PubMed  CAS  Google Scholar 

  • Sayer M.D.J., Davenport J. 1987. The relative importance of the gills to ammonia and urea excretion in five seawater and one freshwater teleost species. J. Fish Biol. 31:561–570

    Google Scholar 

  • Schmidt-Nielsen B., Rabinowitz L. 1964. Methylurea and acetamide:active reabsorption by elasmobranch kidney tubules. Science 146:1587–1588

    PubMed  CAS  Google Scholar 

  • Schmidt-Nielsen B., Truniger B., Rabinowitz L. 5-1-1972. Sodium-linked urea transport by the renal tubule of the spiny dogfish Squalus acanthias. Comp. Biochem. Physiol. 42A:13–25

    Google Scholar 

  • Smith C.P., Wright P.A. 1999. Molecular characterization of an elasmobranch urea transporter. Am. J. Physiol. 276:R622–R626

    PubMed  CAS  Google Scholar 

  • Smith H.W. 1931a. The absorption and excretion of water and salts by elasmobranch fishes. II. Marine elasmobranchs. Am. J. Physiol. 98:296–310

    CAS  Google Scholar 

  • Smith H.W. 1931b. The absorption and excretion of water and salts by the elasmobranch fishes. I. Fresh water elasmobranchs. Am. J. Physiol. 98:279–295

    CAS  Google Scholar 

  • Smith H.W. 1936. The retention and physiological role of urea in the elasmobranch. Biol. Rev. 11: 49–73

    CAS  Google Scholar 

  • Städeler G., Frérichs F.T. 1858. Über das Vorkommen von Harnstoff, Taurin und Scyllit in den Organen der Plagiostomen. J. Prakt. Chem. 73: 48–55

    Google Scholar 

  • Steele S.L., Yancey P.H., Wright P.A. 2005. The little skate Raja erinacea exhibits an extrahepatic ornithine urea cycle in the muscle and modulates nitrogen metabolism during low-salinity challenge. Physiol. Biochem. Zool. 78:216–226

    PubMed  CAS  Google Scholar 

  • Sulikowski J.A., Maginniss L.A. 2001. Effects of environmental dilution on body fluid regulation in the yellow stingray, Urolophus jamaicensis. Comp. Biochem. Physiol. 128A:223–232

    CAS  Google Scholar 

  • Terjesen B.F., Chadwick T.D., Verreth J.A., Ronnestad I., Wright P.A. 2001. Pathways for urea production during early life of an air-breathing teleost, the African catfish Clarias gariepinus Burchell. J. Exp. Biol. 204:2155–2165

    PubMed  CAS  Google Scholar 

  • Terjesen B.F., Ronnestad I., I, Norberg B., Anderson P.M. 2000. Detection and basic properties of carbamoyl phosphate synthetase III during teleost ontogeny: a case study in the Atlantic halibut (Hippoglossus hippoglossus L.). Comp. Biochem. Physiol. 126B:521–535

    CAS  Google Scholar 

  • Terjesen B.F., Verreth J., Fyhn H.J. 1997. Urea and ammonia excretion by embryos and larvae of the African catfish Claria gariepinus (Burchell 1822). Fish. Physiol. Biochem. 16:311–321

    CAS  Google Scholar 

  • Thorson T.B. 1967. Osmoregulatiom in freshwater elasmobranchs. In: P.W. Gilber R.F. Mathewson D.P. Rall, editor. Sharks, skates and rays. Johns Hopkins University Press, Baltimore. pp. 265–270

    Google Scholar 

  • Tillinghast E.K. 1967. Excretory pathways of ammonia and urea in the earthworm Lumbricus terrestris L. J. Exp. Zool. 166:295–300

    PubMed  CAS  Google Scholar 

  • Urist M.R. 1962. Calcium and other ions in the blodd and skeleton of the Nicaraguan freshwater shark. Science 137:985–986

    Google Scholar 

  • Vijayan M.M., Mommsen T.P., Glemet H.C., Moon T.W. 1996. Metabolic effects of cortisol treatment in a marine teleost, the sea raven. J. Exp. Biol. 199: 1509–1514

    PubMed  CAS  Google Scholar 

  • Walsh P. , Milligan C. 1995. Effects of feeding and confinement on nitrogen metabolism and excretion in the gulf toadfish Opsanus beta. J. Exp. Biol. 198:1559–1566

    PubMed  CAS  Google Scholar 

  • Walsh P., Tucker B., Hopkins T. 1994a. Effects of confinement/crowding on ureogenesis in the gulf toadfish, Opsanus beta. J. Exp. Biol. 191:195–206

    CAS  Google Scholar 

  • Walsh P., Wood C., Perry S., Thomas S. 1994b. Urea transport by hepatocytes and red blood cells of seleced elasmobranch and teleost fishes. J. Exp. Biol. 193:321–335

    CAS  Google Scholar 

  • Walsh P.J. 1997. Evolution and regulation of urea synthesis and ureotely in (batrachoidid) fishes. Annu. Rev. Physiol. 59:299–323

    PubMed  CAS  Google Scholar 

  • Walsh P.J., Grosell M., Goss G.G., Bergman H.L., Bergman A.N., Wilson P., Laurent P., Alper S.L., Smith C.P., Kamunde C., Wood C.M. 2001a. Physiological and molecular characterization of urea transport by the gills of the Lake Magadi tilapia (Alcolapia grahami). J. Exp. Biol. 204:509–520

    CAS  Google Scholar 

  • Walsh P.J., Heitz M.J., Campbell C.E., Cooper G.J., Medina M., Wang Y.S., Goss G.G., Vincek V., Wood C.M., Smith C.P. 2000. Molecular characterization of a urea transporter in the gill of the gulf toadfish (Opsanus beta). J. Exp. Biol. 203:2357–2364

    PubMed  CAS  Google Scholar 

  • Walsh P.J., Smith C.P. 2001. Urea Transport. In: P.A. Wright P.M. Anderson, editors. Nitrogen Excretion. Academic Press, New York pp. 279–307

    Google Scholar 

  • Walsh P.J., Wang Y., Campbell C.E., De Boeck G., Wood C.M. 2001b. Patterns of nitrogen waste excretion and gill urea transporter mRNA expression in several species of marine fish. Mar. Biol. 139:839–844

    CAS  Google Scholar 

  • Walsh P.J., Wood C.M. 1996. Interactions of urea transport and synthesis in hepatocytes of the gulf toadfish, Opsanus beta. Comp. Biochem. Physiol. 113B:411–416

    CAS  Google Scholar 

  • Wilkie M.P., Wright P.A., Iwama G.K., Wood C.M. 1993. The physiological responses of the Lahontan cutthroat trout (Oncorhynchus clarki henshawi), a resident of highly alkaline pyramid lake (pH 9.4), to challenge at pH 10. J. Exp. Biol. 175: 173–194

    CAS  Google Scholar 

  • Winberg S., Nilsson A., Hylland P., Soderstom V., Nilsson G.E. 1997. Serotonin as a regulator of hypothalamic-pituitary-interrenal activity in teleost fish. Neurosci. Lett. 230:113–116

    PubMed  CAS  Google Scholar 

  • Wood C., Bergman H., Laurent P., Maina J., Narahara A., Walsh P. 1994. Urea production, acid-base regulation and their interactions in the lake Magadi tilapia, a unique teleost adapted to a highly alkaline environment. J. Exp. Biol. 189:13–36

    PubMed  CAS  Google Scholar 

  • Wood C., Hopkins T., Hogstrand C., Walsh P. 1995a. Pulsatile urea excretion in the ureagenic toadfish Opsanus beta: an analysis of rates and routes. J. Exp. Biol. 198:1729–1741

    Google Scholar 

  • Wood C.M. 1993. Ammonia and urea metabolism and excretion. In: D.H. Evans, editor The Physiology of Fishes. CRC Press Inc., Baton Rouge pp. 379–425

    Google Scholar 

  • Wood C.M. 2001. Influence of feeding, exercise and temperature on nitrogen metabolism and excretion. In: P.A. Wright P.M. Anderson, editors. Nitrogen Excretion. Academic Press, New York pp. 201–221

    Google Scholar 

  • Wood C.M., Gilmour K.M., Perry S.F., Part P., Walsh P.J. 1998. Pulsatile urea excretion in gulf toadfish (Opsanus beta): evidence for activation of a specific facilitated diffusion transport system. J. Exp. Biol. 201 (Pt 6): 805–817

    PubMed  CAS  Google Scholar 

  • Wood C.M., Hopkins T.E., Walsh P.J. 1997. Pulsatile urea excretion in the toadfish (Opsanus beta) is due to a pulsatile excretion mechanism, not a pulsatile production mechanism. J. exp. Biol. 200: 1039–1046

    PubMed  CAS  Google Scholar 

  • Wood C.M., McDonald M.D., Sundin L., Laurent P., Walsh P.J. 2003. Pulsatile urea excretion in the gulf toadfish: mechanisms and controls. Comp. Biochem. Physiol. 136A:667–684

    Google Scholar 

  • Wood C.M., Part P., Wright P.A. 1995b. Ammonia and urea metabolism in relation to gill function and acid-base balance in a marine elasmobranch, the spiny dogfish (Squalus acanthias). J. Exp. Biol. 198:1545–1558

    Google Scholar 

  • Wood C.M., Perry S.F., Wright P.A., Bergman H.L., Randall D.J. 1989. Ammonia and urea dynamics in the Lake Magadi tilapia, a ureotelic teleost fish adapted to an extremely alkaline environment. Respir. Physiol. 77:1–20

    PubMed  CAS  Google Scholar 

  • Wood C.M., Warne J.M., Wang Y., McDonald M.D., Balment R.J., Laurent P., Walsh P.J. 2001. Do circulating plasma AVT and/or cortisol levels control pulsatile urea excretion in the gulf toadfish (Opsanus beta)? Comp. Biochem. Physiol. 129A:859–872

    CAS  Google Scholar 

  • Wright P., Felskie A., Anderson P. 1995a. Induction of ornithine-urea cycle enzymes and nitrogen metabolism and excretion in rainbow trout (Oncorhynchus mykiss) during early life stages. J. Exp. Biol. 198:127–135

    CAS  Google Scholar 

  • Wright P.A., Campbell A., Morgan R.L., Rosenberger A.G., Murray B.W. 2004. Dogmas and controversies in the handling of nitrogenous wastes: expression of arginase Type I and II genes in rainbow trout: influences of fasting on liver enzyme activity and mRNA levels in juveniles. J. Exp. Biol. 207:2033–2042

    PubMed  CAS  Google Scholar 

  • Wright P.A., Fyhn H.J. 2001. Ontogeny of nitrogen metabolism and excretion. In: Wright P.A., Anderson P., editors. Nitrogen Excretion. Academic Press, San Diego pp. 149–200

    Google Scholar 

  • Wright P.A., Land M.D. 1998. Urea production and transport in teleost fishes. Comp. Biochem. Physiol. 119A:47–54

    CAS  Google Scholar 

  • Wright P.A., Pärt P., Wood C.M. 1995b. Ammonia and urea excretion in the tidepool sculpin (Oligocottus maculosus): sites of excretion, effects of reduced salinity and mechanisms of urea transport. Fish Physiol. Biochem. 14:111–123

    CAS  Google Scholar 

  • Wright P.A., Perry S.F., Randall D.J., Wood C.M., Bergman H. 1990. The effects of reducing water pH and total CO2 on a teleost fish adapted to an extremely alkaline environment. J. Exp. Biol. 151:361–369

    Google Scholar 

  • Wright P.A., Randall D.J., Perry S.F. 1989. Fish gill water boundary layer: a site of linkage between carbon dioxide and ammonia excretion. J. Comp. Physiol. 158B:627–635

    Google Scholar 

Download references

Acknowledgement

M.D.M. is supported by NSF (#IOB0455904) and P.J.W. by NSERC Discovery Grants and the Canada Research Chair Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.D. McDonald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDonald, M., Smith, C. & Walsh, P. The Physiology and Evolution of Urea Transport in Fishes. J Membrane Biol 212, 93–107 (2006). https://doi.org/10.1007/s00232-006-0869-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-006-0869-5

Keywords

Navigation