Skip to main content

Advertisement

Log in

Acute stroke magnetic resonance imaging: current status and future perspective

  • Invited Review
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Cerebral stroke is one of the most frequent causes of permanent disability or death in the western world and a major burden in healthcare system. The major portion is caused by acute ischemia due to cerebral artery occlusion by a clot. The minority of strokes is related to intracerebral hemorrhage or other sources. To limit the permanent disability in ischemic stroke patients resulting from irreversible infarction of ischemic brain tissue, major efforts were made in the last decade. To extend the time window for thrombolysis, which is the only approved therapy, several imaging parameters in computed tomography and magnetic resonance imaging (MRI) have been investigated. However, the current guidelines neglect the fact that the portion of potentially salvageable ischemic tissue (penumbra) is not dependent on the time window but the individual collateral blood flow. Within the last years, the differentiation of infarct core and penumbra with MRI using diffusion-weighted images (DWI) and perfusion imaging (PI) with parameter maps was established. Current trials transform these technical advances to a redefined patient selection based on physiological parameters determined by MRI. This review article presents the current status of MRI for acute stroke imaging. A special focus is the ischemic stroke. In dependence on the pathophysiology of cerebral ischemia, the basic principle and diagnostic value of different MRI sequences are illustrated. MRI techniques for imaging of the main differential diagnoses of ischemic stroke are mentioned. Moreover, perspectives of MRI for imaging-based acute stroke treatment as well as monitoring of restorative stroke therapy from recent trials are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, Flegal K, Ford E, Furie K, Go A, Greenlund K, Haase N, Hailpern S, Ho M, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott M, Meigs J, Mozaffarian D, Nichol G, O'Donnell C, Roger V, Rosamond W, Sacco R, Sorlie P, Stafford R, Steinberger J, Thom T, Wasserthiel-Smoller S, Wong N, Wylie-Rosett J, Hong Y (2009) Heart disease and stroke statistics—2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 119:e21–e181

    Article  PubMed  Google Scholar 

  2. Kolominsky-Rabas PL, Heuschmann PU, Marschall D, Emmert M, Baltzer N, Neundörfer B, Schöffski O, Krobot KJ (2006) Lifetime cost of ischemic stroke in Germany: results and national projections from a population-based stroke registry: the Erlangen Stroke Project. Stroke 37:1179–1183

    Article  PubMed  Google Scholar 

  3. Adams HP, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, Marsh EE (1993) Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 24:35–41

    PubMed  Google Scholar 

  4. Mezzapesa DM, Petruzzellis M, Lucivero V, Prontera M, Tinelli A, Sancilio M, Carella A, Federico F (2006) Multimodal MR examination in acute ischemic stroke. Neuroradiology 48:238–246

    Article  CAS  PubMed  Google Scholar 

  5. Gonzalez RG, Schaefer PW (2006) Conventional MRI and MR angiography of stroke. In: Gonzalez RG, Hirsch JA, Koroshetz WJ, Lev MH, Schaefer P (eds) Acute ischemic stroke: imaging and intervention. Springer, Berlin, pp 115–137

    Chapter  Google Scholar 

  6. Astrup J, Siesjo BK, Symon L (1981) Thresholds in cerebral ischemia—the ischemic penumbra. Stroke 12:723–725

    CAS  PubMed  Google Scholar 

  7. Koroshetz WJ, Gonzalez RG (2006) Causes of ischemic stroke. In: Gonzalez RG, Hirsch JA, Koroshetz WJ, Lev MH, Schaefer P (eds) Acute ischemic stroke: imaging and intervention. Springer, Berlin, pp 27–40

    Chapter  Google Scholar 

  8. Jansen O, Schellinger P, Fiebach J, Hacke W, Sartor K (1999) Early recanalisation in acute ischaemic stroke saves tissue at risk defined by MRI. Lancet 353:2036–2037

    Article  CAS  PubMed  Google Scholar 

  9. Warach S, Gaa J, Siewert B, Wielopolski P, Edelman RR (1995) Acute human stroke studied by whole brain echo planar diffusion-weighted magnetic resonance imaging. Ann Neurol 37:231–241

    Article  CAS  PubMed  Google Scholar 

  10. Fiebach JB, Schellinger PD, Gass A, Kucinski T, Siebler M, Villringer A, Olkers P, Hirsch JG, Heiland S, Wilde P, Jansen O, Röther J, Hacke W, Sartor K (2004) Stroke magnetic resonance imaging is accurate in hyperacute intracerebral hemorrhage: a multicenter study on the validity of stroke imaging. Stroke 35:502–506

    Article  PubMed  Google Scholar 

  11. Kidwell CS, Chalela JA, Saver JL, Starkman S, Hill MD, Demchuk AM, Butman JA, Patronas N, Alger JR, Latour LL, Luby ML, Baird AE, Leary MC, Tremwel M, Ovbiagele B, Fredieu A, Suzuki S, Villablanca JP, Davis S, Dunn B, Todd JW, Ezzeddine MA, Haymore J, Lynch JK, Davis L, Warach S (2004) Comparison of MRI and CT for detection of acute intracerebral hemorrhage. JAMA 292:1823–1830

    Article  CAS  PubMed  Google Scholar 

  12. Rowley HA (2001) The four Ps of acute stroke imaging: parenchyma, pipes, perfusion, and penumbra. AJNR 22:599–601

    CAS  PubMed  Google Scholar 

  13. Srinivasan A, Goyal M, Al Azri F, Lum C (2006) State-of-the-art imaging of acute stroke. Radiographics 26(Suppl 1):S75–S95

    Article  PubMed  Google Scholar 

  14. Fiebach JB, Schellinger PD, Geletneky K, Wilde P, Meyer M, Hacke W, Sartor K (2004) MRI in acute subarachnoid haemorrhage: findings with a standardised stroke protocol. Neuroradiology 46:44–48

    Article  CAS  PubMed  Google Scholar 

  15. Boukobza M, Crassard I, Bousser MG, Chabriat H (2009) MR imaging features of isolated cortical vein thrombosis: diagnosis and follow-up. AJNR Am J Neuroradiol 30:344–348

    Article  CAS  PubMed  Google Scholar 

  16. Lovblad KO, Bassetti C, Schneider J, Guzman R, El-Koussy M, Remonda L, Schroth G (2001) Diffusion-weighted MR in cerebral venous thrombosis. Cerebrovasc Dis 11:169–176

    Article  CAS  PubMed  Google Scholar 

  17. Wintermark M, Fiebach J (2009) Imaging of brain parenchyma in stroke. In: Aminoff MJ, Boller F, Swaab DF (eds) Handbook of clinical neurology. Elsevier, Philadelphia, pp 1011–1019

    Google Scholar 

  18. Stejskal E, Tanner J (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292

    Article  CAS  Google Scholar 

  19. Mohr JP, Biller J, Hilal SK, Yuh WT, Tatemichi TK, Hedges S, Tali E, Nguyen H, Mun I, Adams HP Jr et al (1995) Magnetic resonance versus computed tomographic imaging in acute stroke. Stroke 26:807–812

    CAS  PubMed  Google Scholar 

  20. Fiebach JB, Schellinger PD, Jansen O, Meyer M, Wilde P, Bender J, Schramm P, Juttler E, Oehler J, Hartmann M, Hahnel S, Knauth M, Hacke W, Sartor K (2002) CT and diffusion-weighted MR imaging in randomized order: diffusion-weighted imaging results in higher accuracy and lower interrater variability in the diagnosis of hyperacute ischemic stroke. Stroke 33:2206–2210

    Article  CAS  PubMed  Google Scholar 

  21. Saur D, Kucinski T, Grzyska U, Eckert B, Eggers C, Niesen W, Schoder V, Zeumer H, Weiller C, Rother J (2003) Sensitivity and interrater agreement of CT and diffusion-weighted MR imaging in hyperacute stroke. AJNR Am J Neuroradiol 24:878–885

    PubMed  Google Scholar 

  22. Fiehler J, Knudsen K, Kucinski T, Kidwell CS, Alger JR, Thomalla G, Eckert B, Wittkugel O, Weiller C, Zeumer H, Rother J (2004) Predictors of apparent diffusion coefficient normalization in stroke patients. Stroke 35:514–519

    Article  PubMed  Google Scholar 

  23. DeLaPaz RL, Shibata D, Steinberg GK, Zarnegar R, George C (1991) Acute cerebral ischemia in rabbits: correlation between MR and histopathology. AJNR 12:89–95

    CAS  PubMed  Google Scholar 

  24. Li F, Liu KF, Silva MD, Omae T, Sotak CH, Fenstermacher JD, Fisher M, Hsu CY, Lin W (2000) Transient and permanent resolution of ischemic lesions on diffusion-weighted imaging after brief periods of focal ischemia in rats: correlation with histopathology. Stroke 31:946–954

    CAS  PubMed  Google Scholar 

  25. Li F, Omae T, Fisher M (1999) Spontaneous hyperthermia and its mechanism in the intraluminal suture middle cerebral artery occlusion model of rats. Stroke 30:2464–2470; discussion 2470-2461

    CAS  PubMed  Google Scholar 

  26. Grandin CB (2003) Assessment of brain perfusion with MRI: methodology and application to acute stroke. Neuroradiology 45:755–766

    Article  CAS  PubMed  Google Scholar 

  27. Rosen BR, Belliveau JW, Vevea JM, Brady TJ (1990) Perfusion imaging with NMR contrast agents. Magn Reson Med 14:249–265

    Article  CAS  PubMed  Google Scholar 

  28. Wintermark M, Albers GW, Alexandrov AV, Alger JR, Bammer R, Baron J-C, Davis S, Demaerschalk BM, Derdeyn CP, Donnan GA, Eastwood JD, Fiebach JB, Fisher M, Furie KL, Goldmakher GV, Hacke W, Kidwell CS, Kloska SP, Köhrmann M, Koroshetz W, Lee T-Y, Lees KR, Lev MH, Liebeskind DS, Ostergaard L, Powers WJ, Provenzale J, Schellinger P, Silbergleit R, Sorensen AG, Wardlaw J, Wu O, Warach S (2008) Acute stroke imaging research roadmap. Stroke 39:1621–1628

    Article  PubMed  Google Scholar 

  29. Chalela JA, Alsop DC, Gonzalez-Atavales JB, Maldjian JA, Kasner SE, Detre JA (2000) Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 31:680–687

    CAS  PubMed  Google Scholar 

  30. Nuutinen J, Liu Y, Laakso MP, Karonen JO, Vanninen EJ, Kuikka JT, Aronen HJ, Vanninen RL (2009) Perfusion differences on SPECT and PWI in patients with acute ischemic stroke. Neuroradiology 51:687–695

    Article  PubMed  Google Scholar 

  31. Thijs VN, Somford DM, Bammer R, Robberecht W, Moseley ME, Albers GW (2004) Influence of arterial input function on hypoperfusion volumes measured with perfusion-weighted imaging. Stroke 35:94–98

    Article  PubMed  Google Scholar 

  32. Parsons MW, Barber PA, Chalk J, Darby DG, Rose S, Desmond PM, Gerraty RP, Tress BM, Wright PM, Donnan GA, Davis SM (2002) Diffusion- and perfusion-weighted MRI response to thrombolysis in stroke. Ann Neurol 51:28–37

    Article  PubMed  Google Scholar 

  33. Schellinger PD, Fiebach JB, Hacke W (2003) Imaging-based decision making in thrombolytic therapy for ischemic stroke: present status. Stroke 34:575–583

    Article  PubMed  Google Scholar 

  34. Kidwell CS, Alger JR, Saver JL (2003) Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke 34:2729–2735

    Article  PubMed  Google Scholar 

  35. Miyazaki M, Lee VS (2008) Nonenhanced MR angiography. Radiology 248:20–43

    Article  PubMed  Google Scholar 

  36. Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng Y-CN (2008) Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR 30:19–30

    PubMed  Google Scholar 

  37. Mittal S, Wu Z, Neelavalli J, Haacke EM (2008) Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. AJNR 30:232–252

    Google Scholar 

  38. Idbaih A, Boukobza M, Crassard I, Porcher R, Bousser MG, Chabriat H (2006) MRI of clot in cerebral venous thrombosis: high diagnostic value of susceptibility-weighted images. Stroke 37:991–995

    Article  PubMed  Google Scholar 

  39. Vu D, Gonzalez RG, Schaefer PW (2006) Conventional MRI and MR angiography of stroke. In: Gonzalez RG, Hirsch JA, Koroshetz WJ, Lev MH, Schaefer P (eds) Acute ischemic stroke: imaging and intervention. Springer, Berlin, pp 115–137

    Chapter  Google Scholar 

  40. Ozdoba C, Sturzenegger M, Schroth G (1996) Internal carotid artery dissection: MR imaging features and clinical-radiographic correlation. Radiology 199:191–198

    CAS  PubMed  Google Scholar 

  41. Leclerc X, Gauvrit JY, Nicol L, Pruvo JP (1999) Contrast-enhanced MR angiography of the craniocervical vessels: a review. Neuroradiology 41:867–874

    Article  CAS  PubMed  Google Scholar 

  42. Bowen BC (2007) MR angiography versus CT angiography in the evaluation of neurovascular disease. Radiology 245:357–361

    Article  PubMed  Google Scholar 

  43. Leclerc X, Lucas C, Godefroy O, Nicol L, Moretti A, Leys D, Pruvo JP (1999) Preliminary experience using contrast-enhanced MR angiography to assess vertebral artery structure for the follow-up of suspected dissection. AJNR Am J Neuroradiol 20:1482–1490

    CAS  PubMed  Google Scholar 

  44. Yuh WT, Crain MR, Loes DJ, Greene GM, Ryals TJ, Sato Y (1991) MR imaging of cerebral ischemia: findings in the first 24 hours. AJNR Am J Neuroradiol 12:621–629

    CAS  PubMed  Google Scholar 

  45. Crain MR, Yuh WT, Greene GM, Loes DJ, Ryals TJ, Sato Y, Hart MN (1991) Cerebral ischemia: evaluation with contrast-enhanced MR imaging. AJNR Am J Neuroradiol 12:631–639

    CAS  PubMed  Google Scholar 

  46. Adams HP, del Zoppo G, Alberts MJ, Bhatt DL, Brass L, Furlan A, Grubb RL, Higashida RT, Jauch EC, Kidwell C, Lyden PD, Morgenstern LB, Qureshi AI, Rosenwasser RH, Scott PA, Wijdicks EFM (2007) Guidelines for the early management of adults with ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: the American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Stroke 38:1655–1711

    Article  PubMed  Google Scholar 

  47. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group (1995) Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 333:1581–1587

    Article  Google Scholar 

  48. Steiner T, Bluhmki E, Kaste M, Toni D, Trouillas P, von Kummer R, Hacke W (1998) The ECASS 3-hour cohort. Secondary analysis of ECASS data by time stratification. ECASS Study Group. European Cooperative Acute Stroke Study. Cerebrovasc Dis 8:198–203

    Article  CAS  PubMed  Google Scholar 

  49. Hacke W, Kaste M, Bluhmki E, Brozman M, Dávalos A, Guidetti D, Larrue V, Lees KR, Medeghri Z, Machnig T, Schneider D, von Kummer R, Wahlgren N, Toni D (2008) Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 359:1317–1329

    Article  CAS  PubMed  Google Scholar 

  50. Natarajan SK, Snyder KV, Siddiqui AH, Ionita CC, Hopkins LN, Levy EI (2009) Safety and effectiveness of endovascular therapy after 8 hours of acute ischemic stroke onset and wake-up strokes. Stroke 40:3269–3274

    Article  CAS  PubMed  Google Scholar 

  51. Struffert T, Kohrmann M, Engelhorn T, Nowe T, Richter G, Schellinger PD, Schwab S, Doerfler A (2009) Penumbra Stroke System as an “add-on” for the treatment of large vessel occlusive disease following thrombolysis: first results. Eur Radiol 19:2286–2293

    Article  PubMed  Google Scholar 

  52. Latchaw R, Alberts M, Lev M, Connors J, Harbaugh R, Higashida R, Hobson R, Kidwell C, Koroshetz W, Mathews V, Villablanca P, Warach S, Walters B (2009) Recommendations for imaging of acute ischemic stroke. A scientific statement from the American Heart Association. Stroke 40(11):3646–3678

    Article  PubMed  Google Scholar 

  53. Copen WA, Rezai Gharai L, Barak ER, Schwamm LH, Wu O, Kamalian S, Gonzalez RG, Schaefer PW (2009) Existence of the diffusion-perfusion mismatch within 24 hours after onset of acute stroke: dependence on proximal arterial occlusion. Radiology 250:878–886

    Article  PubMed  Google Scholar 

  54. Clark WM, Wissman S, Albers GW, Jhamandas JH, Madden KP, Hamilton S (1999) Recombinant tissue-type plasminogen activator (Alteplase) for ischemic stroke 3 to 5 hours after symptom onset. The ATLANTIS study: a randomized controlled trial. Alteplase thrombolysis for acute noninterventional therapy in ischemic stroke. JAMA 282:2019–2026

    Article  CAS  PubMed  Google Scholar 

  55. Hacke W, Kaste M, Fieschi C, von Kummer R, Davalos A, Meier D, Larrue V, Bluhmki E, Davis S, Donnan G, Schneider D, Diez-Tejedor E, Trouillas P (1998) Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Second European-Australasian Acute Stroke Study Investigators. Lancet 352:1245–1251

    Article  CAS  PubMed  Google Scholar 

  56. Gonzalez RG (2006) Imaging-guided acute ischemic stroke therapy: from “time is brain” to “physiology is brain”. AJNR 27:728–735

    CAS  PubMed  Google Scholar 

  57. Fiebach JB, Schellinger PD (2009) MR mismatch is useful for patient selection for thrombolysis: yes. Stroke 40:2906–2907

    Article  PubMed  Google Scholar 

  58. Köhrmann M, Schellinger PD (2009) Acute stroke triage to intravenous thrombolysis and other therapies with advanced CT or MR imaging: pro MR imaging. Radiology 251:627–633

    Article  PubMed  Google Scholar 

  59. Köhrmann M, Jüttler E, Fiebach JB, Huttner HB, Siebert S, Schwark C, Ringleb PA, Schellinger PD, Hacke W (2006) MRI versus CT-based thrombolysis treatment within and beyond the 3 h time window after stroke onset: a cohort study. Lancet Neurol 5:661–667

    Article  PubMed  Google Scholar 

  60. Schellinger PD, Thomalla G, Fiehler J, Köhrmann M, Molina CA, Neumann-Haefelin T, Ribo M, Singer OC, Zaro-Weber O, Sobesky J (2007) MRI-based and CT-based thrombolytic therapy in acute stroke within and beyond established time windows: an analysis of 1210 patients. Stroke 38:2640–2645

    Article  PubMed  Google Scholar 

  61. Thomalla G, Schwark C, Sobesky J, Bluhmki E, Fiebach JB, Fiehler J, Zaro Weber O, Kucinski T, Juettler E, Ringleb PA, Zeumer H, Weiller C, Hacke W, Schellinger PD, Röther J (2006) Outcome and symptomatic bleeding complications of intravenous thrombolysis within 6 hours in MRI-selected stroke patients: comparison of a German multicenter study with the pooled data of ATLANTIS, ECASS, and NINDS tPA trials. Stroke 37:852–858

    Article  PubMed  Google Scholar 

  62. Furlan AJ, Eyding D, Albers GW, Al-Rawi Y, Lees KR, Rowley HA, Sachara C, Soehngen M, Warach S, Hacke W (2006) Dose Escalation of Desmoteplase for Acute Ischemic Stroke (DEDAS): evidence of safety and efficacy 3 to 9 hours after stroke onset. Stroke 37:1227–1231

    Article  CAS  PubMed  Google Scholar 

  63. Hacke W, Albers G, Al-Rawi Y, Bogousslavsky J, Davalos A, Eliasziw M, Fischer M, Furlan A, Kaste M, Lees KR, Soehngen M, Warach S (2005) The Desmoteplase in Acute Ischemic Stroke Trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke 36:66–73

    Article  CAS  PubMed  Google Scholar 

  64. Albers GW, Thijs VN, Wechsler L, Kemp S, Schlaug G, Skalabrin E, Bammer R, Kakuda W, Lansberg MG, Shuaib A, Coplin W, Hamilton S, Moseley M, Marks MP (2006) Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol 60:508–517

    Article  PubMed  Google Scholar 

  65. Davis S, Donnan G, Parsons M, Levi C, Butcher K, Peeters A, Barber P, Bladin C, De Silva D, Byrnes G, Chalk J, Fink J, Kimber T, Schultz D, Hand P, Frayne J, Hankey G, Muir K, Gerraty R, Tress B, Desmond P (2008) Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol 7:299–309

    Article  PubMed  Google Scholar 

  66. Hacke W, Furlan AJ, Al-Rawi Y, Davalos A, Fiebach JB, Gruber F, Kaste M, Lipka LJ, Pedraza S, Ringleb PA, Rowley HA, Schneider D, Schwamm LH, Leal JS, Söhngen M, Teal PA, Wilhelm-Ogunbiyi K, Wintermark M, Warach S (2009) Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion–diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study. Lancet Neurol 8:141–150

    Article  CAS  PubMed  Google Scholar 

  67. Schäbitz W-R, Schneider A (2006) Developing granulocyte-colony stimulating factor for the treatment of stroke: current status of clinical trials. Stroke 37:1654

    Article  PubMed  Google Scholar 

  68. Kane I, Carpenter T, Chappell F, Rivers C, Armitage P, Sandercock P, Wardlaw J (2007) Comparison of 10 different magnetic resonance perfusion imaging processing methods in acute ischemic stroke: effect on lesion size, proportion of patients with diffusion/perfusion mismatch, clinical scores, and radiologic outcomes. Stroke 38:3158–3164

    Article  PubMed  Google Scholar 

  69. Wintermark M, Albers GW, Alexandrov AV, Alger JR, Bammer R, Baron J-C, Davis S, Demaerschalk BM, Derdeyn CP, Donnan GA, Eastwood JD, Fiebach JB, Fisher M, Furie KL, Goldmakher GV, Hacke W, Kidwell CS, Kloska SP, Köhrmann M, Koroshetz W, Lee T-Y, Lees KR, Lev MH, Liebeskind DS, Ostergaard L, Powers WJ, Provenzale J, Schellinger P, Silbergleit R, Sorensen AG, Wardlaw J, Wu O, Warach S (2008) Acute stroke imaging research roadmap. AJNR 29:e23–e30

    PubMed  Google Scholar 

  70. Chalela JA, Kidwell CS, Nentwich LM, Luby M, Butman JA, Demchuk AM, Hill MD, Patronas N, Latour L, Warach S (2007) Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. Lancet 369:293–298

    Article  PubMed  Google Scholar 

  71. Tong KA, Ashwal S, Holshouser BA, Shutter LA, Herigault G, Haacke EM, Kido DK (2003) Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury: improved detection and initial results. Radiology 227:332–339

    Article  PubMed  Google Scholar 

  72. Jiang Q, Ewing JR, Ding GL, Zhang L, Zhang ZG, Li L, Whitton P, Lu M, Hu J, Li QJ, Knight RA, Chopp M (2005) Quantitative evaluation of BBB permeability after embolic stroke in rat using MRI. J Cereb Blood Flow Metab 25:583–592

    Article  CAS  PubMed  Google Scholar 

  73. Lee J-M, Zhai G, Liu Q, Gonzales ER, Yin K, Yan P, Hsu CY, Vo KD, Lin W (2007) Vascular permeability precedes spontaneous intracerebral hemorrhage in stroke-prone spontaneously hypertensive rats. Stroke 38:3289–3291

    Article  PubMed  Google Scholar 

  74. Bang OY, Buck BH, Saver JL, Alger JR, Yoon SR, Starkman S, Ovbiagele B, Kim D, Ali LK, Sanossian N, Jahan R, Duckwiler GR, Vinuela F, Salamon N, Villablanca JP, Liebeskind DS (2007) Prediction of hemorrhagic transformation after recanalization therapy using T2*-permeability magnetic resonance imaging. Ann Neurol 62:170–176

    Article  PubMed  Google Scholar 

  75. Kassner A, Roberts TPL, Moran B, Silver FL, Mikulis DJ (2009) Recombinant tissue plasminogen activator increases blood-brain barrier disruption in acute ischemic stroke: an MR imaging permeability study. AJNR 30:1864–1869

    CAS  PubMed  Google Scholar 

  76. Kimura K, Iguchi Y, Shibazaki K, Terasawa Y, Inoue T, Uemura J, Aoki J (2008) Large ischemic lesions on diffusion-weighted imaging done before intravenous tissue plasminogen activator thrombolysis predicts a poor outcome in patients with acute stroke. Stroke 39:2388–2391

    Article  PubMed  Google Scholar 

  77. Marks MP, Olivot J-M, Kemp S, Lansberg MG, Bammer R, Wechsler LR, Albers GW, Thijs V (2008) Patients with acute stroke treated with intravenous tPA 3–6 hours after stroke onset: correlations between MR angiography findings and perfusion- and diffusion-weighted imaging in the DEFUSE study. Radiology 249:614–623

    Article  PubMed  Google Scholar 

  78. Kimura K, Iguchi Y, Shibazaki K, Watanabe M, Iwanaga T, Aoki J (2009) M1 susceptibility vessel sign on T2* as a strong predictor for no early recanalization after iv-t-pa in acute ischemic stroke. Stroke 40:3130–3132

    Article  CAS  PubMed  Google Scholar 

  79. Cramer SC, Seitz RJ (2009) Imaging functional recovery from stroke. In: Aminoff MJ, Boller F, Swaab DF (eds) Handbook of clinical neurology. Elsevier, Philadelphia, pp 1011–1019

    Google Scholar 

  80. Cramer SC (2009) Use of imaging in restorative stroke trials. Stroke 40:S28–S29

    Article  PubMed  Google Scholar 

  81. Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD (2007) Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 130:170–180

    Article  PubMed  Google Scholar 

  82. Carey J, Kimberley T, Lewis S, Auerbach E, Dorsey L, Rundquist P, Ugurbil K (2002) Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain 125:773–788

    Article  PubMed  Google Scholar 

  83. Cramer SC, Parrish TB, Levy RM, Stebbins GT, Ruland SD, Lowry DW, Trouard TP, Squire SW, Weinand ME, Savage CR, Wilkinson SB, Juranek J, Leu SY, Himes DM (2007) Predicting functional gains in a stroke trial. Stroke 38:2108–2114

    Article  PubMed  Google Scholar 

Download references

Conflict of interest statement

J.B.F. is a consultant to Paion, Forest, Lundbeck, and Perceptive and has received honoraria. M. W. received funding from the National Institutes of Health (NIH) National Center for Research Resources, Grant KL2 RR024130, GE Healthcare, and Philips Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan P. Kloska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kloska, S.P., Wintermark, M., Engelhorn, T. et al. Acute stroke magnetic resonance imaging: current status and future perspective. Neuroradiology 52, 189–201 (2010). https://doi.org/10.1007/s00234-009-0637-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-009-0637-1

Keywords

Navigation